Thyroglobulin (Tg) is a 660 kDa, dimeric glycoprotein produced by the follicular cells of the thyroid and used entirely within the thyroid gland. Thyroglobulin protein accounts for approximately half of the protein content of the thyroid gland.[5] Human TG (HTG) is a homodimer of subunits each containing 2768 amino acids as synthesized (a short signal peptide may be removed from the N-terminus in the mature protein).[6]

AliasesTG, AITD3, TGN, thyroglobulin
External IDsOMIM: 188450 MGI: 98733 HomoloGene: 2430 GeneCards: TG
Gene location (Human)
Chr.Chromosome 8 (human)[1]
Band8q24.22Start132,866,958 bp[1]
End133,134,903 bp[1]
RNA expression pattern

More reference expression data









RefSeq (mRNA)



RefSeq (protein)



Location (UCSC)Chr 8: 132.87 – 133.13 MbChr 15: 66.67 – 66.85 Mb
PubMed search[3][4]
View/Edit HumanView/Edit Mouse

Thyroglobulin is a precursor to thyroid hormones, which are produced when thyroglobulin's tyrosine residues are combined with iodine and the protein is subsequently cleaved. Each thyroglobulin molecule contains approximately 100-120 tyrosine residues, but only a small number (20) of these are subject to iodination by thyroperoxidase in the follicular colloid. Therefore, each Tg molecule forms approximately 10 thyroid hormone molecules.[5]


Thyroid hormone synthesis, this image traces thyroglobulin from production within the rough endoplasmic reticulum until proteolytic release of the thyroid hormones.

Thyroglobulin (Tg) acts as a substrate for the synthesis of the thyroid hormones thyroxine (T4) and triiodothyronine (T3), as well as the storage of the inactive forms of thyroid hormone and iodine within the follicular lumen of a thyroid follicle[7].

Newly synthesized thyroid hormones (T3 and T4) are attached to thyroglobulin and comprise the colloid within the follicle. When stimulated by thyroid stimulating hormone (TSH), the colloid is endocytosed from the follicular lumen into the surrounding thyroid follicular epithelial cells. The colloid is subsequently cleaved by proteases to release thyroglobulin from its T3 and T4 attachments[8].

The active forms of thyroid hormone: T3 and T4, are then released into circulation where they are either unbound or attached to plasma proteins, and thyroglobulin is recycled back into the follicular lumen where it can continue to serve as a substrate for thyroid hormone synthesis[9].

Clinical significance

Half-life and clinical elevation

Metabolism of thyroglobulin occurs in the liver via thyroid gland recycling of the protein. Circulating thyroglobulin has a half-life of 65 hours. Following thyroidectomy, it may take many weeks before thyroglobulin levels become undetectable. Thyroglobulin levels may be tested regularly for a few weeks or months following the removal of the thyroid.[10] After thyroglobulin levels become undetectable (following thyroidectomy), levels can be serially monitored.

A subsequent elevation of the thyroglobulin level is an indication of recurrence of papillary or follicular thyroid carcinoma. In other words, a rise in thyroglobulin levels in the blood may be a sign that thyroid cancer cells are growing and/or the cancer is spreading.[10] Hence, thyroglobulin levels in the blood are mainly used as a tumor marker[11] [10] for certain kinds of thyroid cancer (particularly papillary or follicular thyroid cancer). Thyroglobulin is not produced by medullary or anaplastic thyroid carcinoma.

Thyroglobulin levels are tested via a simple blood test. Tests are often ordered after thyroid cancer treatment. [10]

Thyroglobulin antibodies

In the clinical laboratory, thyroglobulin testing can be complicated by the presence of anti-thyroglobulin antibodies (ATAs), alternatively referred to as TgAb. Anti-thyroglobulin antibodies are present in 1 in 10 normal individuals, and a greater percentage of patients with thyroid carcinoma. The presence of these antibodies can result in falsely low (or rarely falsely high) levels of reported thyroglobulin, a problem that can be somewhat circumvented by concomitant testing for the presence of ATAs. The ideal strategy for a clinician's interpretation and management of patient care in the event of confounding detection of ATAs is testing to follow serial quantitative measurements (rather than a single laboratory measurement).

ATAs are often found in patients with Hashimoto's thyroiditis or Graves' disease. Their presence is of limited use in the diagnosis of these diseases, since they may also be present in healthy euthyroid individuals. ATAs are also found in patients with Hashimoto's encephalopathy, a neuroendocrine disorder related to—but not caused by—Hashimoto's thyroiditis.[12]


Thyroglobulin has been shown to interact with Binding immunoglobulin protein.[13][14]


  1. GRCh38: Ensembl release 89: ENSG00000042832 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000053469 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Boron WF (2003). Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. p. 1044. ISBN 1-4160-2328-3.
  6. ((cite web |url=""))
  7. "TG thyroglobulin [Homo sapiens (human)] - Gene - NCBI". Retrieved 2019-09-16.
  8. Rousset, Bernard; Dupuy, Corinne; Miot, Françoise; Dumont, Jacques (2000), Feingold, Kenneth R.; Anawalt, Bradley; Boyce, Alison; Chrousos, George (eds.), "Chapter 2 Thyroid Hormone Synthesis And Secretion", Endotext,, Inc., PMID 25905405, retrieved 2019-09-17
  9. Rousset, Bernard; Dupuy, Corinne; Miot, Françoise; Dumont, Jacques (2000), Feingold, Kenneth R.; Anawalt, Bradley; Boyce, Alison; Chrousos, George (eds.), "Chapter 2 Thyroid Hormone Synthesis And Secretion", Endotext,, Inc., PMID 25905405, retrieved 2019-09-17
  10. "Thyroglobulin: MedlinePlus Lab Test Information". Retrieved 2019-05-06.
  11. "ACS :: Tumor Markers". American Cancer Society. Retrieved 2009-03-28.
  12. Ferracci F, Moretto G, Candeago RM, Cimini N, Conte F, Gentile M, Papa N, Carnevale A (February 2003). "Antithyroid antibodies in the CSF: Their role in the pathogenesis of Hashimoto's encephalopathy". Neurology. 60 (4): 712–4. doi:10.1212/01.wnl.0000048660.71390.c6. PMID 12601119.
  13. Delom F, Mallet B, Carayon P, Lejeune PJ (June 2001). "Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein". J. Biol. Chem. 276 (24): 21337–42. doi:10.1074/jbc.M101086200. PMID 11294872.
  14. Delom F, Lejeune PJ, Vinet L, Carayon P, Mallet B (February 1999). "Involvement of oxidative reactions and extracellular protein chaperones in the rescue of misassembled thyroglobulin in the follicular lumen". Biochem. Biophys. Res. Commun. 255 (2): 438–43. doi:10.1006/bbrc.1999.0229. PMID 10049727.

Further reading

  • Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, Haugen BR, Sherman SI, Cooper DS, Braunstein GD, Lee S, Davies TF, Arafah BM, Ladenson PW, Pinchera A (2003). "A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma". J. Clin. Endocrinol. Metab. 88 (4): 1433–41. doi:10.1210/jc.2002-021702. PMID 12679418.
  • Henry M, Zanelli E, Piechaczyk M, Pau B, Malthièry Y (1992). "A major human thyroglobulin epitope defined with monoclonal antibodies is mainly recognized by human autoantibodies". Eur. J. Immunol. 22 (2): 315–9. doi:10.1002/eji.1830220205. PMID 1371467.
  • Targovnik HM, Cochaux P, Corach D, Vassart G (1992). "Identification of a minor Tg mRNA transcript in RNA from normal and goitrous thyroids". Mol. Cell. Endocrinol. 84 (1–2): R23–6. doi:10.1016/0303-7207(92)90087-M. PMID 1639210.
  • Dunn AD, Crutchfield HE, Dunn JT (1991). "Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L". J. Biol. Chem. 266 (30): 20198–204. PMID 1939080.
  • Lamas L, Anderson PC, Fox JW, Dunn JT (1989). "Consensus sequences for early iodination and hormonogenesis in human thyroglobulin". J. Biol. Chem. 264 (23): 13541–5. PMID 2760035.
  • Marriq C, Lejeune PJ, Venot N, Vinet L (1989). "Hormone synthesis in human thyroglobulin: possible cleavage of the polypeptide chain at the tyrosine donor site". FEBS Lett. 242 (2): 414–8. doi:10.1016/0014-5793(89)80513-7. PMID 2914619.
  • Christophe D, Cabrer B, Bacolla A, Targovnik H, Pohl V, Vassart G (1985). "An unusually long poly(purine)-poly(pyrimidine) sequence is located upstream from the human thyroglobulin gene". Nucleic Acids Res. 13 (14): 5127–44. doi:10.1093/nar/13.14.5127. PMC 321854. PMID 2991855.
  • Baas F, van Ommen GJ, Bikker H, Arnberg AC, de Vijlder JJ (1986). "The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb". Nucleic Acids Res. 14 (13): 5171–86. doi:10.1093/nar/14.13.5171. PMC 311533. PMID 3016640.
  • Kubak BM, Potempa LA, Anderson B, Mahklouf S, Venegas M, Gewurz H, Gewurz AT (1989). "Evidence that serum amyloid P component binds to mannose-terminated sequences of polysaccharides and glycoproteins". Mol. Immunol. 25 (9): 851–8. doi:10.1016/0161-5890(88)90121-6. PMID 3211159.
  • Malthiéry Y, Lissitzky S (1987). "Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA". Eur. J. Biochem. 165 (3): 491–8. doi:10.1111/j.1432-1033.1987.tb11466.x. PMID 3595599.
  • Parma J, Christophe D, Pohl V, Vassart G (1988). "Structural organization of the 5' region of the thyroglobulin gene. Evidence for intron loss and "exonization" during evolution". J. Mol. Biol. 196 (4): 769–79. doi:10.1016/0022-2836(87)90403-7. PMID 3681978.
  • Bergé-Lefranc JL, Cartouzou G, Mattéi MG, Passage E, Malezet-Desmoulins C, Lissitzky S (1985). "Localization of the thyroglobulin gene by in situ hybridization to human chromosomes". Hum. Genet. 69 (1): 28–31. doi:10.1007/BF00295525. PMID 3967888.
  • Malthiéry Y, Lissitzky S (1985). "Sequence of the 5'-end quarter of the human-thyroglobulin messenger ribonucleic acid and of its deduced amino-acid sequence". Eur. J. Biochem. 147 (1): 53–8. doi:10.1111/j.1432-1033.1985.tb08717.x. PMID 3971976.
  • Avvedimento VE, Di Lauro R, Monticelli A, Bernardi F, Patracchini P, Calzolari E, Martini G, Varrone S (1985). "Mapping of human thyroglobulin gene on the long arm of chromosome 8 by in situ hybridization". Hum. Genet. 71 (2): 163–6. doi:10.1007/BF00283375. PMID 4043966.
  • Xiao S, Pollock HG, Taurog A, Rawitch AB (1995). "Characterization of hormonogenic sites in an N-terminal, cyanogen bromide fragment of human thyroglobulin". Arch. Biochem. Biophys. 320 (1): 96–105. doi:10.1006/abbi.1995.1346. PMID 7793989.
  • Corral J, Martín C, Pérez R, Sánchez I, Mories MT, San Millan JL, Miralles JM, González-Sarmiento R (1993). "Thyroglobulin gene point mutation associated with non-endemic simple goitre". Lancet. 341 (8843): 462–4. doi:10.1016/0140-6736(93)90209-Y. PMID 8094490.
  • Gentile F, Salvatore G (1994). "Preferential sites of proteolytic cleavage of bovine, human and rat thyroglobulin. The use of limited proteolysis to detect solvent-exposed regions of the primary structure". Eur. J. Biochem. 218 (2): 603–21. doi:10.1111/j.1432-1033.1993.tb18414.x. PMID 8269951.
  • Mallet B, Lejeune PJ, Baudry N, Niccoli P, Carayon P, Franc JL (1996). "N-glycans modulate in vivo and in vitro thyroid hormone synthesis. Study at the N-terminal domain of thyroglobulin". J. Biol. Chem. 270 (50): 29881–8. doi:10.1074/jbc.270.50.29881. PMID 8530385.
  • Yang SX, Pollock HG, Rawitch AB (1996). "Glycosylation in human thyroglobulin: location of the N-linked oligosaccharide units and comparison with bovine thyroglobulin". Arch. Biochem. Biophys. 327 (1): 61–70. doi:10.1006/abbi.1996.0093. PMID 8615697.
  • Molina F, Bouanani M, Pau B, Granier C (1996). "Characterization of the type-1 repeat from thyroglobulin, a cysteine-rich module found in proteins from different families". Eur. J. Biochem. 240 (1): 125–33. doi:10.1111/j.1432-1033.1996.0125h.x. PMID 8797845.
  • Grani G, Fumarola A (Jun 2014). "Thyroglobulin in Lymph Node Fine-Needle Aspiration Washout: A Systematic Review and Meta-analysis of Diagnostic Accuracy". The Journal of Clinical Endocrinology and Metabolism. 99 (6): 1970–82. doi:10.1210/jc.2014-1098. PMID 24617715.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.