নিউট্রন
নিউট্রন হল একটি [[অতিপারমাণবিক কণা], এর কোনও বৈদ্যুতিক আধান নেই এবং এর ভর প্রোটন কণার ভরের চেয়ে সামান্য বেশি। প্রোটন এবং নিউট্রন মিলে পরমাণুর নিউক্লিয়াস গঠন করে। যেহেতু নিউক্লিয়াসের মধ্যে প্রোটন এবং নিউট্রন একইরকম আচরণ করে, এবং প্রত্যেকের ভর প্রায় এক পারমাণবিক ভর একক, এই দুই কণাকেই নিউক্লিওন বলা হয়।[5] তাদের বৈশিষ্ট্য এবং মিথস্ক্রিয়াগুলি পারমাণবিক পদার্থবিজ্ঞানে বর্ণিত হয়।
![]() নিউট্রনের কোয়ার্ক সামগ্রী। স্বতন্ত্র কোয়ার্কের রঙ নির্ধারণ ইচ্ছামত, তবে তিনটি রঙই থাকতে হবে। কোয়ার্কদের মধ্যে শক্তির মধ্যস্থতা করে গ্লুয়ন। | |
শ্রেণীবিন্যাস | ব্যারিয়ন |
---|---|
গঠন | ১ উচ্চ কোয়ার্ক, ২ নিম্ন কোয়ার্ক |
পরিসংখ্যান | ফার্মিয়নিক |
মিথষ্ক্রিয়া | মহাকর্ষ, দুর্বল, সবল, তড়িচ্চুম্বকীয় |
প্রতিকণা | অ্যান্টিনিউট্রন |
তত্ত্ব | আর্নেস্ট রাদারফোর্ড[1] (1920) |
আবিষ্কার | জেমস চ্যাডউইক[2] (1932) |
ভর | [3] [3] [4] |
নিউক্লিয়াসের রাসায়নিক এবং পারমাণবিক বৈশিষ্ট্যগুলি প্রোটনের সংখ্যা দ্বারা নির্ধারিত হয়, যাকে বলা হয় পারমাণবিক সংখ্যা, এবং নিউক্লিয়াসে নিউট্রনের সংখ্যাকে, নিউট্রন সংখ্যা বলা হয়। আণবিক ভর সংখ্যা হল এই দুটি নিউক্লিয়নের মোট সংখ্যা। উদাহরণ স্বরূপ, কার্বনের এর পারমাণবিক সংখ্যা হল ৬, এবং যেটি প্রচুর পরিমাণে পাওয়া যায়, সেই কার্বন-১২ সমস্থানিকটিতে (আইসোটোপ) ৬ টি নিউট্রন রয়েছে, যদিও এর বিরল কার্বন-১৩ সমস্থানিকে ৭ টি নিউট্রন রয়েছে। প্রকৃতিতে কিছু উপাদানের কেবলমাত্র একটি স্থিতিশীল সমস্থানিক থাকে, যেমন ফ্লোরিন। অন্যান্য অনেক উপাদানের অনেক স্থিতিশীল সমস্থানিক আছে, উদাহরণস্বরূপ টিনের দশটি স্থিতিশীল সমস্থানিক আছে। নিউক্লিয়াসের মধ্যে, প্রোটন এবং নিউট্রনগুলি নিউক্লীয় বল দ্বারা একত্রে আবদ্ধ থাকে। নিউক্লিয়াসের স্থিতিশীলতার জন্য নিউট্রন প্রয়োজন, এর একটিমাত্র ব্যতিক্রম হল একক প্রোটন হাইড্রোজেন পরমাণু। নিউট্রনগুলি কেন্দ্রীণ বিদারণ এবং সংযোজনের সময় প্রচুর পরিমাণে উৎপাদিত হয়। তারার মধ্যে রাসায়নিক উপাদানের কেন্দ্রীন সংশ্লেষের জন্য তারা প্রধান অবদান, এবং সেটি ঘটে কেন্দ্রীণ বিদারণ, কেন্দ্রীণ সংযোজন, এবং নিউট্রন ক্যাপচার (একটি পারমাণবিক প্রতিক্রিয়া) পদ্ধতির মাধ্যমে।
নিউট্রন পারমাণবিক শক্তি উৎপাদনের জন্য প্রয়োজনীয়। ১৯৩২ সালে জেমস চ্যাডউইক নিউট্রন আবিষ্কার করার দশকে,[6] নিউট্রনগুলি বিভিন্ন ধরণের নিউক্লীয় সংক্রমণ (রাসায়নিক উপাদানের রূপান্তর) শুরু করার জন্য ব্যবহৃত হত। ১৯৩৮ সালে কেন্দ্রীণ বিদারণ আবিষ্কার হবার পর,[7] দ্রুত উপলব্ধি করা গিয়েছিল যে, যদি বিদারণ পদ্ধতিতে নিউট্রন উৎপাদিত হয়, এই নিউট্রনগুলির প্রতিটি নিউক্লীয় চেইন প্রতিক্রিয়ায় আরও বিদারণ ঘটাতে পারবে।[8] এই ঘটনা এবং অনুসন্ধানগুলির ফলে বিজ্ঞান প্রথম স্বনির্ভর পারমাণবিক চুল্লি (শিকাগো পাইল-১, ১৯৪২, প্রথম কৃত্রিম পারমাণবিক চুল্লি) এবং প্রথম পারমাণবিক অস্ত্রের (ত্রিনিতি, ১৯৪৫) দিকে অগ্রসর হয়।
মুক্ত নিউট্রন, পরমাণুকে সরাসরি আয়নিত না করে, আয়নিত বিকিরণের কারণ ঘটায়। মাত্রার উপর নির্ভর করে এগুলি থেকে জৈবিক বিপদ হতে পারে।[8] মহাজাগতিক রশ্মির ঝরনা এবং পৃথিবীর ভূত্বকের স্বতঃস্ফূর্ত বিভাজনীয় উপাদানগুলির প্রাকৃতিক তেজস্ক্রিয়তা দ্বারা সৃষ্ট প্রাকৃতিক মুক্ত নিউট্রনের "নিউট্রন ব্যাকগ্রাউন্ড" প্রবাহ পৃথিবীতে বিদ্যমান।[9] বিশেষ নিউট্রন উৎস, যেমন নিউট্রন জেনারেটর, গবেষণা চুল্লী এবং স্পেলেশন উৎস থেকে মুক্ত নিউট্রন তৈরি হয়, বিকিরণ এবং নিউট্রন স্ক্র্যাটারিং পরীক্ষায় ব্যবহারের জন্য।
বিবরণ
নিউক্লিয়ার পদার্থবিদ্যা |
---|
![]() |
নিউক্লিয়াস · নিউক্লিয়ন (প্রো., নি.) · নিউক্লিয় বল · নিউক্লিয়াসের গঠন · নিউক্লিয়ার বিক্রিয়া |
নিউকিয়াসের মডেল Liquid drop · Nuclear shell model · Nuclear structure · Binding energy · p–n ratio · Drip line · Island of stability · Valley of stability |
তেজস্ক্রিয় ক্ষয় Alpha α · Beta β (2β, β+) · K/L capture · Isomeric (Gamma γ · Internal conversion) · Spontaneous fission · Cluster decay · Neutron emission · Proton emission Decay energy · Decay chain · Decay product · Radiogenic nuclide |
নিউক্লিয়ার ফিশন Spontaneous · Products (pair breaking) · Photofission |
Capturing processes electron · neutron (s · r) · proton (p · rp) |
High energy processes Spallation (by cosmic ray) · Photodisintegration |
নিউক্লিয়ও সিনথেসিস Nuclear fusion Processes: Stellar · Big Bang · Supernova Nuclides: Primordial · Cosmogenic · Artificial |
বিজ্ঞানী Alvarez · Becquerel · Bethe · A.Bohr · N.Bohr · Chadwick · Cockcroft · Ir.Curie · Fr.Curie · Pi.Curie · Skłodowska-Curie · Davisson · Fermi · Hahn · Jensen · Lawrence · Mayer · Meitner · Oliphant · Oppenheimer · Proca · Purcell · Rabi · Rutherford · Soddy · Strassmann · Szilárd · Teller · Thomson · Walton · Wigner |
একটি পারমাণবিক নিউক্লিয়াস অনেকগুলি প্রোটন (যাকে প্রকাশ করা হয় Z অক্ষর দিয়ে, পারমাণবিক সংখ্যা) এবং অনেকগুলি নিউট্রন দিয়ে (যাকে প্রকাশ করা হয় N অক্ষর দিয়ে, নিউট্রন সংখ্যা) গঠিত হয়, নিউক্লীয় বল দ্বারা এরা সংযুক্ত থাকে। পারমাণবিক সংখ্যাটি পরমাণুর রাসায়নিক বৈশিষ্ট্য সংজ্ঞায়িত করে, এবং নিউট্রন সংখ্যা দিয়ে নির্ধারিত হয় সমস্থানিক বা নিউক্লাইড।[8] সমস্থানিক এবং নিউক্লাইড শব্দদুটি প্রায়শই প্রতিশব্দের মত ব্যবহৃত হয়, কিন্তু তারা যথাক্রমে রাসায়নিক এবং পারমাণবিক বৈশিষ্ট্যগুলি উল্লেখ করে। সঠিকভাবে বলতে গেলে, সমস্থানিকগুলি একই সংখ্যক প্রোটন সহ দুটি বা আরও বেশি নিউক্লাইড হয়;একই সংখ্যক নিউট্রনযুক্ত নিউক্লাইডকে আইসোটোন বলা হয়। আণবিক ভর সংখ্যা, প্রতীক A, হল Z এবং N এর যোগফলের সমান, অর্থাৎ A = (Z + N)। একই আণবিক ভর সংখ্যা সহ নিউক্লাইডকে আইসোবার বলা হয়। হাইড্রোজেন পরমাণুর সবচেয়ে সাধারণ সমস্থানিকের নিউক্লিয়াসে (রাসায়নিক প্রতীক ১H) একটিমাত্র প্রোটন আছে। ভারী হাইড্রোজেন সমস্থানিকের নিউক্লিয়াস ডিউটেরিয়াম (D বা ২H) এবং ট্রিটিয়াম (T বা 3H) এর মধ্যে একটি প্রোটন থাকে এবং যথাক্রমে একটি ও দুটি নিউট্রন থাকে। অন্যান্য সমস্ত ধরণের পারমাণবিক নিউক্লিয়াসে দুটি বা আরও বেশি প্রোটন এবং বিভিন্ন সংখ্যক নিউট্রন থাকে।উদাহরণস্বরূপ, সাধারণ রাসায়নিক উপাদানের সর্বাধিক সাধারণ নিউক্লাইড সীসাতে, (২০৮Pb) ৮২টি প্রোটন এবং ১২৬টি নিউট্রন রয়েছে। নিউক্লাইডের সারণির মধ্যে সমস্ত পরিচিত নিউক্লাইড রয়েছে। নিউট্রন কোনও রাসায়নিক উপাদান না হলেও এই সারণিতে অন্তর্ভুক্ত রয়েছে।[10]
মুক্ত নিউট্রনের ভর ৯৩৯,৫৬৫,৪১৩.৩ eV/c২, বা ১.৬৭৪৯২৭৪১×১০−২৭কেজি, বা ১.০০৮৬৬৪৯১৫৮৮u।[4] নিউট্রনের গড় ব্যাসার্ধ প্রায় ০.৮×১০−১৫মিটার, বা ০.৮ fm,[11] এবং এর স্পিন-½ ফার্মিয়ন।[12]
নিউট্রনের কোনও পরিমাপযোগ্য বৈদ্যুতিক আধান নেই। ধনাত্মক বৈদ্যুতিক আধানের জন্য, প্রোটন সরাসরি বৈদ্যুতিক ক্ষেত্র দ্বারা প্রভাবিত হয়, কিন্তু নিউট্রনের ওপর বৈদ্যুতিক ক্ষেত্রের প্রভাব পড়েনা। নিউট্রনের চৌম্বকীয় মোমেন্ট রয়েছে, তবে নিউট্রন চৌম্বক ক্ষেত্র দ্বারা প্রভাবিত হয়। নিউট্রনের চৌম্বকীয় মোমেন্টের মান ঋণাত্মক, কারণ এর অভিমুখীকরণ এর স্পিনের বিপরীতে।[13]
মুক্ত নিউট্রন স্থায়ী হয়না, ক্ষয় হয়ে প্রোটন, ইলেকট্রন এবং প্রতিনিউট্রিনোতে পরিণত হয়, যার গড় জীবন ১৫ মিনিটেরও কম (৮৮১.৫±১.৫ সেকেন্ড)।[14] এটি তেজস্ক্রিয়তা বা বিটা ক্ষয় নামে পরিচিত। এই ক্ষয় সম্ভব কারণ নিউট্রনের ভর প্রোটনের চেয়ে কিছুটা বেশি। মুক্ত প্রোটন স্থিতিশীল। নিউক্লিয়াসে আবদ্ধ নিউক্লাইডের উপর নির্ভর করে নিউট্রন বা প্রোটন স্থিতিশীল বা অস্থায়ী হতে পারে। যেখানে নিউট্রন ক্ষয় হয়ে প্রোটনে পরিণত হয় বা তার বিপরীত ঘটে, সেই বিটা ক্ষয় দুর্বল শক্তি দ্বারা পরিচালিত হয়, এবং এর জন্য ইলেক্ট্রন এবং নিউট্রিনো বা তাদের অ্যান্টি-পার্টিকেলগুলির নিঃসরণ বা শোষণ প্রয়োজন।
আরো দেখুন
![]() |
উইকিমিডিয়া কমন্সে নিউট্রন সংক্রান্ত মিডিয়া রয়েছে। |
- Ionizing radiation
- Isotope
- List of particles
- Neutron magnetic moment
- Neutron radiation and the Sievert radiation scale
- Neutronium
- Nuclear reaction
- Nucleosynthesis
- Neutron capture nucleosynthesis
- R-process
- S-process
- Thermal reactor
নিউট্রনের উৎপত্তিস্থল
- Neutron generator
- Neutron source
Processes involving neutrons
- Neutron bomb
- Neutron diffraction
- Neutron flux
- Neutron transport
- Cosmogenic radionuclide dating
তথ্যসূত্র
- Ernest Rutherford. Chemed.chem.purdue.edu. Retrieved on 2012-08-16.
- 1935 Nobel Prize in Physics. Nobelprize.org. Retrieved on 2012-08-16.
- "2018 CODATA recommended values" https://physics.nist.gov/cuu/Constants/index.html
- Mohr, P.J.; Taylor, B.N. and Newell, D.B. (2014), "The 2014 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 7.0). The database was developed by J. Baker, M. Douma, and S. Kotochigova. (2014). National Institute of Standards and Technology, Gaithersburg, Maryland 20899.
- Thomas, A.W.; Weise, W. (২০০১), The Structure of the Nucleon, Wiley-WCH, Berlin, আইএসবিএন 978-3-527-40297-7
- Chadwick, James (১৯৩২)। "Possible Existence of a Neutron"। Nature। 129 (3252): 312। doi:10.1038/129312a0। বিবকোড:1932Natur.129Q.312C।
- Hahn, O. & Strassmann, F. (১৯৩৯)। "Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle" [On the detection and characteristics of the alkaline earth metals formed by irradiation of uranium with neutrons]। Die Naturwissenschaften। 27 (1): 11–15। doi:10.1007/BF01488241। বিবকোড:1939NW.....27...11H।
- Glasstone, Samuel; Dolan, Philip J., সম্পাদকগণ (১৯৭৭), The Effects of Nuclear Weapons (3rd সংস্করণ), U.S. Dept. of Defense and Energy Research and Development Administration, U.S. Government Printing Office, আইএসবিএন 978-1-60322-016-3
-
Carson, M.J.; ও অন্যান্য (২০০৪)। "Neutron background in large-scale xenon detectors for dark matter searches"। Astroparticle Physics। 21 (6): 667–687। arXiv:hep-ex/0404042
। doi:10.1016/j.astropartphys.2004.05.001। বিবকোড:2004APh....21..667C। - Nudat 2. Nndc.bnl.gov. Retrieved on 2010-12-04.
- Povh, B.; Rith, K.; Scholz, C.; Zetsche, F. (২০০২)। Particles and Nuclei: An Introduction to the Physical Concepts। Berlin: Springer-Verlag। পৃষ্ঠা 73। আইএসবিএন 978-3-540-43823-6।
- Basdevant, J.-L.; Rich, J.; Spiro, M. (২০০৫)। Fundamentals in Nuclear Physics। Springer। পৃষ্ঠা 155। আইএসবিএন 978-0-387-01672-6।
- Tipler, Paul Allen; Llewellyn, Ralph A. (২০০২)। Modern Physics (4 সংস্করণ)। Macmillan। পৃষ্ঠা 310। আইএসবিএন 978-0-7167-4345-3।
- Nakamura, K (২০১০)। "Review of Particle Physics"। Journal of Physics G। 37 (7A): 075021। doi:10.1088/0954-3899/37/7A/075021। বিবকোড:2010JPhG...37g5021N। PDF with 2011 partial update for the 2012 edition The exact value of the mean lifetime is still uncertain, due to conflicting results from experiments. The Particle Data Group reports values up to six seconds apart (more than four standard deviations), commenting that "our 2006, 2008, and 2010 Reviews stayed with 885.7±0.8 s; but we noted that in light of SEREBROV 05 our value should be regarded as suspect until further experiments clarified matters. Since our 2010 Review, PICHLMAIER 10 has obtained a mean life of 880.7±1.8 s, closer to the value of SEREBROV 05 than to our average. And SEREBROV 10B[...] claims their values should be lowered by about 6 s, which would bring them into line with the two lower values. However, those reevaluations have not received an enthusiastic response from the experimenters in question; and in any case the Particle Data Group would have to await published changes (by those experimenters) of published values. At this point, we can think of nothing better to do than to average the seven best but discordant measurements, getting 881.5±1.5s. Note that the error includes a scale factor of 2.7. This is a jump of 4.2 old (and 2.8 new) standard deviations. This state of affairs is a particularly unhappy one, because the value is so important. We again call upon the experimenters to clear this up."
আরো পড়ুন
- James Byrne, Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons. Mineola, New York: Dover Publications, 2011. আইএসবিএন ০৪৮৬৪৮২৩৮৩.
- Abraham Pais, Inward Bound, Oxford: Oxford University Press, 1986. আইএসবিএন ০১৯৮৫১৯৯৭৪.
- Sin-Itiro Tomonaga, The Story of Spin, The University of Chicago Press, 1997
- Herwig Schopper, Weak interactions and nuclear beta decay, Publisher, North-Holland Pub. Co., 1966.
- Annotated bibliography for neutrons from the Alsos Digital Library for Nuclear Issues