Amniotic fluid

The amniotic fluid is the protective liquid contained by the amniotic sac of a gravid amniote. This fluid serves as a cushion for the growing fetus, but also serves to facilitate the exchange of nutrients, water, and biochemical products between mother and fetus.

Amniotic fluid
Anatomical terminology

For humans, the amniotic fluid is commonly called water or waters (Latin liquor amnii).


Amniotic fluid is present from the formation of the gestational sac. Amniotic fluid is in the amniotic sac. It is generated from maternal plasma, and passes through the fetal membranes by osmotic and hydrostatic forces. When fetal kidneys begin to function in about week 16, fetal urine also contributes to the fluid.[1] In earlier times, it was believed that the amniotic fluid was composed entirely of fetal urine.

The fluid is absorbed through the fetal tissue and skin. After the 15th-25th week of pregnancy when the keratinization of an embryo's skin occurs, the fluid is primarily absorbed by the fetal gut.[1]


At first, amniotic fluid is mainly water with electrolytes, but by about the 12-14th week the liquid also contains proteins, carbohydrates, lipids and phospholipids, and urea, all of which aid in the growth of the fetus.


The volume of amniotic fluid increases with the growth of fetus. From the 10th to the 20th week it increases from 25ml to 400ml approximately. Approximately in the 10th-11th week the breathing and swallowing of the fetus slightly decrease the amount of fluid, but neither urination nor swallowing contributes significantly to fluid quantity changes, until the 25th week, when keratinization of skin is complete. Then the relationship between fluid and fetal growth stops. It reaches a plateau of 800ml by the 28-week gestational age. The amount of fluid declines to roughly 400 ml at 42 weeks.[2] There is about 500 cc to1L of amniotic fluid at birth.[1][3]

Rupture of membranes

The forewaters are released when the amnion ruptures. This is commonly known as the time when a woman's "water breaks". When this occurs during labour at term, it is known as "spontaneous rupture of membranes". If the rupture precedes labour at term, however, it is referred to as "premature rupture of membranes". The majority of the hindwaters remain inside the womb until the baby is born. Artificial rupture of membrane (ARM), a manual rupture of the amniotic sac, can also be performed to release the fluid if the amnion has not spontaneously ruptured.[4]


Swallowed amniotic fluid (in later stages of development) creates urine and contributes to the formation of meconium. Amniotic fluid protects the developing baby by cushioning against blows to the mother's abdomen, allowing for easier fetal movement and promoting muscular/skeletal development. Amniotic fluid swallowed by the fetus helps in the formation of the gastrointestinal tract. Contrary to popular belief, amniotic fluid has not been conclusively shown to be inhaled and exhaled by the fetus. In fact, studies from the 1970s show that in a healthy fetus, there is no inward flow of amniotic fluid into the airway.[5] Instead, lung development occurs as a result of the production of fetal lung fluid which expands the lungs. It also prevents the fetus from mechanical jerks and shocks. The fetus, which develops within a fluid-filled amniotic sac, relies on the placenta for respiratory gas exchange rather than the lungs. While not involved in fetal oxygenation, fetal breathing movements (FBM) nevertheless have an important role in lung growth and in development of respiratory muscles and neural regulation. FBM are regulated differently in many respects than postnatal respiration, which results from the unique intrauterine environment....At birth, the transition to continuous postnatal respiration involves a fall in temperature, gaseous distention of the lungs, activation of the Hering-Breuer reflexes, and functional connectivity of afferent O2 chemoreceptor activity with respiratory motoneurons and arousal centers. [6]

Clinical significance


Amniotic fluid is removed from the mother by an amniocentesis procedure, where a long needle is inserted through the abdomen into the amniotic sac, using ultrasound guidance such that the fetus is not harmed. Amniocentesis is an abnormal procedure, and is only performed if there is a suspicion of health defects in the fetus, or if an early delivery of the fetus may be necessary, since there can be complications from the procedure. If warranted, fluid is collected between 16–42 weeks of fetal development, and 20-30ml of fluid are removed.


Analysis of amniotic fluid can reveal many aspects of the baby's genetic health as well as the age and viability of the fetus. This is because the fluid contains metabolic wastes and compounds used in assessing fetal age and lung maturity, but amniotic fluid also contains fetal cells, which can be examined for genetic defects.

Amniotic fluid normally has a pH of 7.0 to 7.5.[7] Because pH in the upper vagina is normally acidic (pH 3.8-4.5), a vaginal pH test showing a pH of more than 4.5 strengthens a suspicion of rupture of membranes in case of clear vaginal discharge in pregnancy.[7] Other tests for detecting amniotic fluid mainly include nitrazine paper test and fern test.[8] One main test that is performed on amniotic fluid is the L/S ratio test (lecithin/sphingomyelin). This test is used to determine fetal lung maturity. Both lecithin and sphingomyelin are lung surfactants that are present in increasing amounts in the maturing fetus, though past week 33, sphingomyelin levels remain relatively constant. Measuring a ratio of L/S of 2:1 or greater indicates that the fetus can be safely delivered, with functioning lungs.

Too little amniotic fluid (oligohydramnios) can be a cause or an indicator of problems for the mother and baby. The majority of pregnancies proceed normally and the baby is born healthy, but this isn't always the case. Babies with too little amniotic fluid can develop contractures of the limbs, clubbing of the feet and hands, and also develop a life-threatening condition called hypoplastic lungs. If a baby is born with hypoplastic lungs, which are small underdeveloped lungs, this condition is potentially fatal and the baby can die shortly after birth due to inadequate oxygenation. Potter sequence refers to a constellation of findings related to insufficient amniotic fluid and includes shortened and malformed limbs with clubbed feet and the underdeveloped lungs that can lead to perinatal death.

On every prenatal visit, the obstetrician/gynaecologist or midwife should measure the patient's fundal height with a tape measure. It is important that the fundal height be measured and properly recorded to track proper fetal growth and the increasing development of amniotic fluid. The obstetrician/gynaecologist or midwife should also routinely ultrasound the patient—this procedure will also give an indication of proper fetal growth and amniotic fluid development. Oligohydramnios can be caused by infection, kidney dysfunction or malformation (since much of the late amniotic fluid volume is urine), procedures such as chorionic villus sampling (CVS), and preterm premature rupture of membranes (PPROM). Oligohydramnios can sometimes be treated with bed rest, oral and intravenous hydration, antibiotics, steroids, and amnioinfusion. It is also important to keep the baby warm and moist.

The opposite of oligohydramnios is polyhydramnios, an excess volume of amniotic fluid in the amniotic sac.

A rare but very often fatal condition (fatal for both mother and child) connected with amniotic fluid is amniotic fluid embolism.

Stem cell research

Recent studies show that amniotic fluid contains a considerable quantity of stem cells.[9] These amniotic stem cells[10][11] are pluripotent and able to differentiate into various tissues, which may be useful for future human application.[12][13][14] Some researchers have found that amniotic fluid is also a plentiful source of non-embryonic stem cells.[15] These cells have demonstrated the ability to differentiate into a number of different cell-types, including brain, liver and bone.

It is possible to conserve the stem cells extracted from amniotic fluid in private stem cells banks. Some private companies offer this service for a fee.

See also


  1. Larsen, William J. (2001). Human embryology (3. ed.). Philadelphia, Pa.: Churchill Livingstone. p. 490. ISBN 978-0443065835.
  2. Underwood, Mark A; Gilbert, William M; Sherman, Michael P (24 March 2005). "Amniotic Fluid: Not Just Fetal Urine Anymore". Journal of Perinatology. 25 (5): 341–348. doi:10.1038/ PMID 15861199.
  3. Caroline, Nancy L. (1977-01-03). "Medical Care in the Streets". JAMA: The Journal of the American Medical Association. 237 (1): 43. doi:10.1001/jama.1977.03270280045020. ISSN 0098-7484.
  4. Forewaters and hindwaters in Q&A section at Archived 2007-10-09 at the Wayback Machine
  5. Lily A.W. Disorder of Amniotic Fluid: ASSALI, N.S. Pathophysiology of Gestation Volume II. Academic Press, New York & London. 1972
  6. Koos, Brian J.; Rajaee, Arezoo (2014), "Fetal Breathing Movements and Changes at Birth", Advances in Fetal and Neonatal Physiology, Springer New York, 814, pp. 89–101, doi:10.1007/978-1-4939-1031-1_8, ISBN 9781493910304, PMID 25015803
  7. Vaginal pH Test from Point of Care Testing, July 2009, at: University of California, San Francisco – Department of Laboratory Medicine. Prepared by: Patricia Nassos, PhD, MT and Clayton Hooper, RN.
  8. Bennett, S.; Cullen, J.; Sherer, D.; Woods Jr, J. (2008). "The Ferning and Nitrazine Tests of Amniotic Fluid Between 12 and 41 Weeks Gestation". American Journal of Perinatology. 10 (2): 101–104. doi:10.1055/s-2007-994637. PMID 8476469.
  9. "Stem cells in amniotic fluid show promise", Los Angeles Times, Jan 8 2007, retrieved 27 July 2009
  10. De Coppi, Paolo; Bartsch, Georg; Siddiqui, M Minhaj; Xu, Tao; Santos, Cesar C.; Perin, Laura; Mostoslavsky, Gustavo; Serre, Angéline C.; Snyder, Evan Y.; Yoo, James J.; Furth, Mark E.; Soker, Shay; Atala, Anthony (2007). "Isolation of amniotic stem cell lines with potential for therapy". Nature Biotechnology. 25: 100–106. doi:10.1038/nbt1274. PMID 17206138.
  11. "Scientists See Potential In Amniotic Stem Cells", Washington Post, Jan 8 2007, retrieved 27 July 2009
  12. "Amniotic Fluid Yields New Type of Stem Cell", PBS - The Online News Hour, Jan 8 2007, retrieved 27 July 2009
  13. "Versatile Stem Cell Identified in Amniotic Fluid", Pamela J. Hines, International Society of Stem Cell Research, March 21, 2008, retrieve 27 July 2009 "Archived copy". Archived from the original on 2009-04-06. Retrieved 2009-05-09.CS1 maint: archived copy as title (link)
  14. "Amniotic Stem Cells - "Mesenchimal Stem Cells in Human Application", Biocell Center Group, 2009, retrieved 27 July 2009 "Archived copy" (PDF). Archived from the original (PDF) on 2009-04-19. Retrieved 2009-05-09.CS1 maint: archived copy as title (link)
  15. De Coppi, Paolo; Bartsch, Georg; Siddiqui, M Minhaj; Xu, Tao; Santos, Cesar C.; Perin, Laura; Mostoslavsky, Gustavo; Serre, Angéline C.; Snyder, Evan Y.; Yoo, James J.; Furth, Mark E.; Soker, Shay; Atala, Anthony (2007). "Isolation of amniotic stem cell lines with potential for therapy". Nature Biotechnology. 25: 100–106. doi:10.1038/nbt1274. PMID 17206138.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.