আণবিক নিউক্লিয়াস
আণবিক নিউক্লিয়াস (পারমাণবিক নিউক্লিয়াস) হলো ক্ষুদ্র ও ঘনত্বপূর্ণ অঞ্চন যা পরমানুর কেন্দ্রে অবস্থিত প্রোটন ও নিউট্রনের সমন্বয়ে গঠিত। ১৯০৯ সালের গাইগার-মার্সডেনের স্বর্ণপাত পরীক্ষার উপর ভিত্তি করে ১৯১১ সালে আর্নেস্ট রাদারফোর্ট আণবিক নিউক্লিয়াস আবিষ্কার করেন। ১৯৩২ সালে যখন নিউট্রন আবিষ্কার হয়, ডিমিত্রি আইভ্যানেনকো[1] ও অরনার হাইজেনবার্গ[2][3][4][5][6] প্রোটন ও নিউক্লিয়াস দ্বারা গঠিত নিউক্লিয়াসের মডেলের আরো উন্নতি সাধন করেন। পরমানুর প্রায় সমস্ত ভরই এর নিউক্লিয়াসে পুঞ্জিভূত থাকলেও খুবই নগন্য পরিমান ভর ইলেকট্রন ক্লাউডের উপরও নির্ভর করে। নিউক্লিয়ার বলের মাধ্যমে প্রোটন ও নিউট্রন একত্রে যুক্ত হয়ে নিউক্লিয়াস গঠন করে।
নিউক্লিয়ার পদার্থবিদ্যা |
---|
![]() |
নিউক্লিয়াস · নিউক্লিয়ন (প্রো., নি.) · নিউক্লিয় বল · নিউক্লিয়াসের গঠন · নিউক্লিয়ার বিক্রিয়া |
নিউকিয়াসের মডেল Liquid drop · Nuclear shell model · Nuclear structure · Binding energy · p–n ratio · Drip line · Island of stability · Valley of stability |
তেজস্ক্রিয় ক্ষয় Alpha α · Beta β (2β, β+) · K/L capture · Isomeric (Gamma γ · Internal conversion) · Spontaneous fission · Cluster decay · Neutron emission · Proton emission Decay energy · Decay chain · Decay product · Radiogenic nuclide |
নিউক্লিয়ার ফিশন Spontaneous · Products (pair breaking) · Photofission |
Capturing processes electron · neutron (s · r) · proton (p · rp) |
High energy processes Spallation (by cosmic ray) · Photodisintegration |
নিউক্লিয়ও সিনথেসিস Nuclear fusion Processes: Stellar · Big Bang · Supernova Nuclides: Primordial · Cosmogenic · Artificial |
বিজ্ঞানী Alvarez · Becquerel · Bethe · A.Bohr · N.Bohr · Chadwick · Cockcroft · Ir.Curie · Fr.Curie · Pi.Curie · Skłodowska-Curie · Davisson · Fermi · Hahn · Jensen · Lawrence · Mayer · Meitner · Oliphant · Oppenheimer · Proca · Purcell · Rabi · Rutherford · Soddy · Strassmann · Szilárd · Teller · Thomson · Walton · Wigner |

নিউক্লিয়াসের ব্যাসের পরিসীমা হাইড্রোজেনের (একটি প্রোটনের ব্যাস)[7] জন্য ১.৭৫ ফেম্টোমিটার (১.৭৫x১০−১৫ মি) হতে ১৫ ফেম্টোমিটার (ইউরেনিয়ামের মতো ভারী পরমানুর ক্ষেত্রে) পর্যন্ত হতে পারে। পরমানুর নিজস্ব ব্যাসের (নিউক্লিয়াস + ইলেকট্রন ক্লাউড) তুলনায় এই ব্যাস খুবই কম হয়ে থাকে। উদাহরণস্বরূপ, ইউরোনিয়ামের নিউক্লিয়াসের ব্যাস এর পরমানুর তুলনায় প্রায় ২৩,০০০ গুন এবং হাইড্রেজেন প্রায় ১৪৫,০০০ গুন কম হয়।
পারমাণবিক নিউক্লিয়াসের উপাদান এবং এই উপাদানগুলো যে বলের মাধ্যমে একে অপরের সাথে যুক্ত থাকে তার অধ্যয়ন ও উপলব্ধি পদার্থ বিজ্ঞানের যে শাখায় আলোচনা করা হয়, তাকে নিউক্লিয়ার পদার্থবিদ্যা বলে।
ভূমিকা
ইতিহাস
আর্নেস্ট রাদারফোর্ড ১৯১১ সালে নিউক্লিয়াস আবিষ্কার করেন থমসনের পারমাণবিক প্লাম পুডিং মডেলের যথার্থতা নিরূপণ কালে। তবে এর আগেই জে.জে থমসন কর্তৃক ইলেকট্রন আবিষ্কৃত হয় এবং থমসন প্রস্তাব করেন - সার্বিকভাবে পরমানু আধান নিরপেক্ষ হলেও পরমানুর কোথায়ও না কোথাও ধনাত্মক আধানও বিদ্যমান। থমসন ধারনা করেন ধনাত্মক আধানের বলয়ের চারদিকে ঋণাত্মক আধান বিশিষ্ট ইলেকট্রন বিক্ষিপ্তভাবে ছড়ানো থাকে। পরবর্তীতে অর্নেস্ট রাদারফোর্ড ও তার গবেষণা সহায়ক হ্যান্স জেইজার এবং অর্নেস্ট মার্সডেনের সহায়তায় পাতলা ধাতুর পাতের দিকে ধাবিত আলফা কণার (হিলিয়াম নিউক্লিয়াস) পথ বিচ্যুতি ঘটনা পরিলক্ষিত করেন। লক্ষ করে দেখা যায় যৎসামান্য পথবিচ্যুতি হয়ে ধনাত্মক আধান বিশিষ্ট আলফা কণা ধাতব পাত ভেদ করে চলে যায়। তবে আশ্চর্যের বিষয় এই যে, অনেকগুলো কণা খুব বেশী কোণে বিচ্যুতি হয়ে যায়। ইলেকট্রনের চেয়ে প্রায় ৮০০০ গুণ ভারী এবং দ্রুতগামী আলফা কণার এরূপ বিচ্যুতি কারণ পরমানুস্থ শক্তিশালী বল। তিনি অনুভব করলেন, প্লাম পুডিং মডেল যথাযথ হতে পারে না। কেবল যদি ধনাত্মক ও ঋণাত্মক আধান একে অপরের থেকে আলাদা এবং সেই সাথে পরমানুর সমস্ত ভর এর ধনাত্মক আধানে কেন্দ্রভূত থাকে তবেই আলফা কণার বিচ্যুতি ব্যাখ্যা করা যেতে পারে। এই পরীক্ষা থেকে প্রমাণিত হয়ে যে, নিউক্লিয়াস ভারী ও ধনাত্মক আধান বিশিষ্ট ঘনত্বপূর্ণ কেন্দ্র।
নামকরণ
নিউক্লিয়াস শব্দটি নেয়া হয়েছে ল্যাটিন শব্দ নিউক্লিয়াস (nucleus) হতে; ক্ষুদ্রতম নক্স (”বাদাম”) - যার মানে ফলের ভিতরে ছোট বীজের মতো বস্তু; ফলের শাঁস; কেন্দ্র বা মর্মস্থল। ১৮৪৪ সালে মাইকেল ফ্যারাডে পরমানুর কেন্দ্রকে বুঝানোর জন্য এই শব্দটি ব্যবহার করলেও ১৯১২ সালে থেকে যেহেতু আধুনিক পারমাণবিক ত্বত্তের প্রস্তাবনা আর্নেস্ট রাদারফোর্ডের মাধ্যমে শুরু হয়[8], তাই বলা যায় নিউক্লিয়াস শব্দটি তাৎক্ষণিকভাবে পারমাণবিক ত্বত্তে নেয়া হয় নি। উদাহরণস্বরূপ, ১৯১৬ সালে গিলবার্ট এন. লুইস তার বিখ্যাত নিবন্ধ "অ্যাটম অ্যান্ড দ্য মোলিকিউল" - এ উল্লেখ করেছিলেন যে, "পরমাণু কার্নেল এবং বহিরাগত পরমাণু বা শেল দ্বারা গঠিত।"[9]
নিউক্লিয়াসের বিকাশ প্রক্রিয়া

নিউট্রন ও প্রোটন দ্বারা গঠিত পরমাণুর নিউক্লিয়াস অধিকতর মৌলিক কণার আবির্ভাবে কোয়ার্কে পরিণত হয়। কোয়ার্কগুলো একে অপরের সাথে শক্তিশালী নিউক্লীয় বলের মাধ্যমে যুক্ত থাকে নির্দিষ্ট স্থিতিশীল হেডরনের সংমিশ্রণ তৈরী করে যা ব্যারন নামে পরিচিত। প্রতিটি ব্যারন থেকে নির্গত শক্তিশালী নিউক্লীয় বলকে এমনভাবে বিস্তার লাভ করতে হবে যেন ধনাত্মক চার্জযুক্ত প্রোটনের মধ্যবর্তী তড়িৎ বিকর্ষণ বল কম হয়। এতে নিউট্রন এবং প্রোটন একত্রে আবদ্ধ থাকার ক্ষমতা পায়। শক্তিশালী নিউক্লীয় বল অত্যন্ত স্বল্প দৈর্ঘ্যের হয়ে থাকে যা শুধুমাত্র নিউক্লিয়াস এর প্রান্ত অতিক্রম করেই শূন্য হয়ে যায়। ধনাত্মক চার্জযুক্ত নিউক্লিয়াসের সম্মিলিত শক্তি এর চারদিকের অরবিটে অবস্থিত ঋণাত্মক চার্জযুক্ত ইলেকট্রন ধরে রাখতে সহায়তা করে। অন্যদিকে অরবিটে ভ্রমণরত ঋণাত্মক চার্জযুক্ত ইলেকট্রনও নিউক্লিয়াসের প্রতি আসক্তি প্রকাশ করে যা তাদের অরবিটে থাকতে স্থিতিশীলতা প্রদান করে। একটি পরমাণু কোন মৌল দিয়ে গঠিত তার নির্ধারিত হয় নিউক্লিয়াসের প্রোটন সংখ্যার উপর। যদি সমান সংখ্যক ইলেকট্রন নিউক্লিয়াসের বাইরে ভ্রমণরত অবস্থায় থাকলে তাকে নিরপেক্ষ পরমাণু বলে। স্বতন্ত্র মৌলগুলো তাদের ইলেকট্রন শেয়ার করার জন্য একত্রিত হয়ে আরো স্থিতিশীল ইলেকট্রন বিন্যাস গঠন করে। নিউক্লিয়াসের চারদিকের স্থিতিশীল ইলেকট্রনিক অরবিটের এই ইলেকট্রন শেয়ারই আমাদের কাছে ম্যাক্রো জগতের রসায়ন হিসেবে প্রতীয়মান হয়। প্রোটন মূলত একটি নিউক্লিয়াসের সামগ্রিক চার্জকে বুঝায় এবং সেই সাথে তার রাসায়নিক পরিচয় বহন করে। নিউট্রন তড়িৎ নিরপেক্ষ। কিন্তু নিউক্লিয়াসের ভর প্রকাশে নিউট্রন প্রায় প্রোটনর সমান ভূমিকা রাখে। নিউট্রন আইসোটোপের(ভিন্ন পারমাণবিক ভরবিশিষ্ট একই পারমাণবিক নম্বর) ঘটনা ব্যাখ্যা করতে পারে। নিউট্রনের প্রধান ভূমিকা হলো এটা নিউক্লিয়াসের অভ্যন্তরীন ইলেকট্রোস্ট্যাটিক বিকর্ষণ কমায়।
উপাদান ও আকৃতি
প্রোটন এবং নিউট্রন হলো একই স্পিনের শক্তিশালী কোয়ান্টাম সংখ্যার বিভিন্ন মান বিশিষ্ট ফার্মিয়ন। তাই দুইটি প্রোটন ও দুইটি নিউট্রন একই তরঙ্গ ফাংশন শেয়ার করতে পারে কেননা তাদের অভিন্ন কোয়ান্টাম নম্বর থাকে না। নিউক্লিওনকে কখনও কখনও একই কণার দুটি ভিন্ন ভিন্ন কোয়ান্টাম পদার্থ হিসাবে দেখা যায়।[10][11] দুইটি ফার্মিয়ন যখন তারা যুগ্মভাবে থাকে তখন তারা বোসন কণার মতো আচরণ প্রদর্শন করে। দুইটি ফার্মিয়ন অর্থাৎ দুটি প্রোটন বা দুটি নিউট্রন অথবা একটি প্রোটন + নিউট্রন (ডিউটেরন) কণা।
বল
হলো নিউক্লিয়াস ও বলসীমা
নিউক্লিয়ার মডেল
লিকুইড ড্রপ মডেল (Liquid drop model)
শুরুর দিকের নিউক্লিয়াসের মডেলগুলোতে, নিউক্লিয়াসকে একটি ঘূর্ণয়মান জলীয় বিন্দু হিসেবে বিবেচনা করা হতো। দীর্ঘ পরিসীমার তড়িৎ-চুম্বকীয় বল এবং অপেক্ষাকৃত স্বল্প দৈর্ঘ্যের নিউক্লিয়ার বলের দরুণ বিভিন্ন আকারের জলীয় বিন্দুর আকৃতি ধারণ করে। এই মডেল দিয়ে নিউক্লিয়াসের বহু গুরুত্বপূর্ণ বিষয় (যেমন – আকার ও উপাদান পরিবর্তনের সাথে সাথে বন্ধন শক্তির পরিবর্তন) সফলভাবে ব্যাখ্যা করা গেলেও প্রোটন ও নিউট্রনের “ম্যাজিক নম্বর” বিশিষ্ট নিউক্লিয়াসের বিশেষ স্থায়িত্বের ঘটনা ব্যাখ্যা করা যায় না। সেমি-এমপিরিক্যাল ভর সূত্র (semi-empirical mass formula) অনুযায়ী, নিউক্লিয়াসের আনুমানিক বন্ধন শক্তি পাঁচ ধরনের শক্তির (নিন্মলিখিত) সমন্বয়ে হিসাব করা হয়।
আয়তন (Volume energy): যখন একই আকৃতির অনেকগুলো নিউক্লিয়ন একত্রিত হয়ে ক্ষুদ্র জায়গা দখল করে, তখন প্রতিটি অভ্যন্তরস্থ নিউক্লিয়ন অন্য নিউক্লিয়ন দ্বারা আঘাত প্রাপ্ত হয় (চিত্রে নির্দেশিত)। তাই বলা যায়, নিউক্লিয় শক্তি তার আয়তনের সমানুপাতিক।
পৃষ্ঠশক্তি (Surface energy): কিছু সংখ্যক নিউক্লিয়ন যারা নিউক্লিয়াসের উপরিতলে অবস্থান করে তারা অভ্যন্তরস্থ নিউক্লিয়ন অপেক্ষা অল্প সংখ্যক নিউক্লিয়নের সাথে ক্রিয়া করায় (চিত্রে নির্দেশিত) এদের বন্ধন শক্তি কম হয়। সুতরাং পৃষ্ঠতল পৃষ্ঠশক্তির সমানুপাতিক এবং পৃষ্ঠতল বৃদ্ধির কারণে নিউক্লিয়ার বন্ধন শক্তি কমে যায়।
কুলম্ব শক্তি (Coulomb Energy)নিউক্লিয়াসের প্রতি জোড়া প্রোট্রনের মধ্যবর্তীস্থ তড়িৎ বিকর্ষণও এর বন্ধন শক্তি কমানোর জন্য দায়ী।
শক্তিস্তর
সংঘাত
আরো দেখুন
তথ্যসূত্র
- Iwanenko, D.D. (১৯৩২)। "The neutron hypothesis"। Nature। 129 (3265): 798। doi:10.1038/129798d0। বিবকোড:1932Natur.129..798I।
- Heisenberg, W. (১৯৩২)। "Über den Bau der Atomkerne. I"। Z. Phys.। 77: 1–11। doi:10.1007/BF01342433। বিবকোড:1932ZPhy...77....1H।
- Heisenberg, W. (১৯৩২)। "Über den Bau der Atomkerne. II"। Z. Phys.। 78 (3–4): 156–164। doi:10.1007/BF01337585। বিবকোড:1932ZPhy...78..156H।
- Heisenberg, W. (১৯৩৩)। "Über den Bau der Atomkerne. III"। Z. Phys.। 80 (9–10): 587–596। doi:10.1007/BF01335696। বিবকোড:1933ZPhy...80..587H।
- Miller A. I. Early Quantum Electrodynamics: A Sourcebook, Cambridge University Press, Cambridge, 1995, আইএসবিএন ০৫২১৫৬৮৯১৯, pp. 84–88.
- Fernandez, Bernard & Ripka, Georges (২০১২)। "Nuclear Theory After the Discovery of the Neutron"। Unravelling the Mystery of the Atomic Nucleus: A Sixty Year Journey 1896 — 1956। Springer। পৃষ্ঠা 263। আইএসবিএন 9781461441809।
- Brumfiel, Geoff (জুলাই ৭, ২০১০)। "The proton shrinks in size"। Nature। doi:10.1038/news.2010.337।
- Harper, D.। "Nucleus"। Online Etymology Dictionary। সংগ্রহের তারিখ ২০১০-০৩-০৬।
- Lewis, G.N. (১৯১৬)। "The Atom and the Molecule"। Journal of the American Chemical Society। 38 (4): 4। doi:10.1021/ja02261a002।
- Sitenko, A.G. & Tartakovskiĭ, V.K. (১৯৯৭)। Theory of Nucleus: Nuclear Structure and Nuclear Interaction। Kluwer Academic। পৃষ্ঠা 3। আইএসবিএন 0-7923-4423-5।
- Srednicki, M.A. (২০০৭)। Quantum Field Theory। Cambridge University Press। পৃষ্ঠা 522–523। আইএসবিএন 978-0-521-86449-7।
বহি:সংযোগ
![]() |
উইকিউক্তিতে নিচের বিষয় সম্পর্কে সংগৃহীত উক্তি আছে:: আণবিক নিউক্লিয়াস |