অনিশ্চয়তা নীতি
অনিশ্চয়তা নীতি (বিশেষ ভাবে পরিচিত : হাইজেনবার্গের অনিশ্চয়তা নীতি বা হাইজেনবার্গের অনির্দিষ্টতা নীতি) , কোয়ান্টাম বলবিদ্যার অন্তর্গত একটি অসমীকরণ,যা পারমানবিক ও অবপারমানবিক জগৎএর একটি মৌলিক সীমা উল্লেখ করে যা একটি কণার প্রকৃত অবস্থান (x) এবং ভরবেগ (p) এর একটি সীমা প্রকাশ করে ।
কোয়ান্টাম বলবিজ্ঞান | ||
শ্রোডিঙ্গারের সমীকরন এর হ্যামিলটনীয় রুপ | ||
ভূমিকা | ||
| ||
| ||
| ||
| ||
| ||
| ||
১৯২৭ সালে প্রথম, জার্মান পদার্থবিদ "ওয়েনের হাইজেনবার্গ" [1] কর্তৃক প্রবর্তিত হয়। এটি আরও নির্দিষ্টভাবে কিছু কণার অবস্থান নির্ধারিত হয় বলে উল্লেখ করা হয়, তবে কম গতিতেই তার গতি সম্পর্কে জানা যায় এবং তদ্বিপরীত। অবস্থান σx এর আদর্শ বিচ্যুতি সম্পর্কিত প্রথাগত বৈষম্য এবং গতি σp এর আদর্শ বিচ্যুতি, সেটি পরবর্তীকালে “”আর্ল হেস কেনার্ড[2] এবং সালে হারমান ওয়েলের[3] দ্বারা প্রাপ্ত হয়েছিল:
(ħ হয় হ্রাসপ্রাপ্ত প্ল্যাংক ধ্রূবকের , h / (2π)।
ঐতিহাসিকভাবে, অনিশ্চয়তা নীতি বিভ্রান্ত হয়েছে[4][5] পদার্থবিজ্ঞানে কিছুটা অনুরূপ প্রভাব, যা পর্যবেক্ষক প্রভাব বলে, যা মনে করে যে পদ্ধতিগুলি প্রভাবিত না করে নির্দিষ্ট পদ্ধতিতে পরিমাপ করা যায় না, যেটা কোনও পদ্ধতি পরিবর্তন না করে। হাইজেনবার্গ কোয়ান্টাম স্তরে কোয়ান্টাম অনিশ্চয়তার একটি শারীরিক "ব্যাখ্যা" হিসাবে একটি পর্যবেক্ষক প্রভাব ব্যবহার করেন।[6] তবে এটা স্পষ্ট হয়ে ওঠে যে, অনিশ্চয়তা নীতিটি তরঙ্গের মতো সমস্ত ব্যবস্থার বৈশিষ্ট্যগুলির মধ্যে অন্তর্নিহিত,[7] এবং এটি কোয়ান্টাম বলবিদ্যা মধ্যে উদ্ভূত হয় কারণ কেবলমাত্র সমস্ত কোয়ান্টাম বস্তুর তরঙ্গ ধর্ম। সুতরাং, অনিশ্চয়তা নীতি আসলে কোয়ান্টাম পদ্ধতির একটি মৌলিক সম্পত্তির কথা বলে, এবং বর্তমান প্রযুক্তির পর্যবেক্ষণগত সাফল্য সম্পর্কে শুধুমাত্র এক বিবৃতি নয়।[8] এটি জোর দেওয়া উচিত যে পরিমাপের অর্থ কেবল একটি প্রক্রিয়া যা কোনও পদার্থবিজ্ঞানী-পর্যবেক্ষক অংশ নেন না, বরং কোনও পর্যবেক্ষকের নির্বিশেষে ক্লাসিক্যাল এবং কোয়ান্টাম বস্তুর মধ্যে কোনও পারস্পরিক ক্রিয়া।[9][note 1]
যেহেতু অনিশ্চয়তার নীতি কোয়ান্টাম বলবিদ্যার একটি মৌলিক ফলাফল, কোয়ান্টাম বলবিদ্যার সাধারণ প্রচলন নিয়মিতভাবে এর দিকগুলি পালন করে। যাইহোক, কয়েকটি গবেষণায় তাদের প্রধান গবেষণা কর্মসূচির অংশ হিসাবে অনিশ্চয়তার নীতির একটি নির্দিষ্ট রূপে ইচ্ছাকৃতভাবে পরীক্ষা করতে পারে। উদাহরণস্বরূপ, অতিপরিবাহিতা (superconducting)[11] বা কোয়ান্টাম আলকবিদ্যা[12] পদ্ধতিতে সংখ্যার-দশা অনিশ্চয়তার সম্পর্কগুলির পরীক্ষাগুলি অন্তর্ভুক্ত করে। তার অপারেশনের জন্য অনিশ্চয়তা নীতির উপর নির্ভরশীল আবেদনগুলি অত্যন্ত কম শব্দ প্রযুক্তি যেমন মহাকর্ষীয় তরঙ্গ ইন্টারফেরোমিটারের মধ্যে প্রয়োজন।[13]
কোনো কণিকার অবস্থান এবং ভরবেগ, একইসাথে নিখুঁতভাবে জানা সম্ভব না। অবস্থান নিখুঁতভাবে পরিমাপ করতে গেলে ভরবেগের মানে ভুলের পরিমাণ বাড়বে, আবার ভরবেগ নিখুঁতভাবে পরিমাপ করতে গেলে অবস্থানের মানে ভুলের পরিমাণ বাড়বে -- এই নীতিটিকে অনিশ্চয়তা নীতি বলা হয়। জার্মান পদার্থবিজ্ঞানী ওয়ার্নার হাইজেনবার্গ এই মৌলিক নীতিটি আবিষ্কার করেন।
ইলেকট্রনের ভরবেগ সঠিকভাবে জানতে এমন ফোটন দরকার যার শক্তি কম, যাতে এটা ইলেকট্রনটির ভরবেগকে প্রভাবিত না করতে পারে। কিন্তু আমরা জানি ফোটনের শক্তি এর কম্পাঙ্কের সমানুপাতিক। অর্থাৎ, কম শক্তির ফোটনের কম্পাঙ্ক কম তথা তরঙ্গ দৈর্ঘ্য বেশি হবে। ফলে এমন বড়সড় ফোটন ইলেকট্রনের অবস্থান ঠিকভাবে নির্ণয় করতে ব্যর্থ হবে, যেমন আমাদের হাত ব্যর্থ হয় টেবিলের অমসৃণ পৃষ্ঠকে অণুধাবন করতে। আবার আমরা যদি ছোট(তরঙ্গ দৈর্ঘ্য কম তথা কম্পাঙ্ক বেশী) ফোটন ব্যবহার করি, তাহলে অণুবীক্ষণ যন্ত্রের মত, এটা ইলেকট্রনের অবস্থান ভালোভাবে নির্ণয় করলেও, এমন ফোটনের শক্তি বেশী থাকায় ইলেকট্রনের ভরবেগ পালটে দেবে। এভাবে অনিশ্চয়তা নীতি সবসময়ই প্রযোজ্য থাকবে। প্লাংকের ধ্রূবক খুব ছোট বলে বাস্তব জীবনে অনিশ্চয়তা সূত্র আমরা অনুভব করি না বললেই চলে।কিন্তু আনুবীক্ষণিক জগতে অনিশ্চয়তা সূত্রের সত্যতা খুব ভালভাবে লক্ষ করা যায়।
অবস্থান ও ভরবেগের অনিশ্চয়তাকে যথাক্রমে এবং দ্বারা প্রকাশ করলে, অনিশ্চয়তা নীতিটিকে নিম্নরূপে গাণিতিকভাবে প্রকাশ করা যায়,
যেখানে
- হলো লঘুকৃত প্ল্যাংকের ধ্রূবকের (প্ল্যাংকের ধ্রূবকে ২ দিয়ে ভাগ করলে এটা পাওয়া যায়)।
একইভাবে, কৌণিক অবস্থান ও কৌণিক ভরবেগের অনিশ্চয়তাকে যথাক্রমে এবং দ্বারা প্রকাশ করলে, আনিশ্চয়তা নীতিটিকে নিম্নরূপে গাণিতিক ভাবে প্রকাশ করা যায় ,
ভূমিকা
তরঙ্গ বলবিজ্ঞান ব্যাখ্যা
উদাহরণ
অতিরিক্ত অনিশ্চিত সম্পর্ক
মিশ্র রাষ্ট্রগুলিতে
ম্যাককন-পটি অনিশ্চয়তা সম্পর্ক
ফেজ স্থান
পদ্ধতিগত এবং পরিসংখ্যান ত্রুটি
পরিমাণ এন্ট্রোপিক অনিশ্চয়তা নীতি
সুরেলা বিশ্লেষণ
সংকেত প্রক্রিয়াজাতকরণ
ব্যান্ডিক্স এর তত্ত্ব
হার্ডি এর অনিশ্চয়তা নীতি
ইতিহাস
পরিভাষা এবং অনুবাদ
হাইজেনবার্গ মাইক্রোস্কোপ
গুরুতর প্রতিক্রিয়া
বিচ্ছিন্ন পর্যবেক্ষক আদর্শ
আইনস্টাইন এর চেরা
আইনস্টাইন এর বাক্স
বিজড়িত কণাগুলির জন্য ইপিআর কূটাভাস
পপার এর সমালোচনা
অনেক-বিশ্ব অনিশ্চয়তা
মুক্ত ইচ্ছা
আরো দেখুন
নোট
বাহ্যিক লিঙ্কগুলি
![]() |
উইকিউক্তিতে নিচের বিষয় সম্পর্কে সংগৃহীত উক্তি আছে:: অনিশ্চয়তা নীতি |
- The certainty principle
- Hazewinkel, Michiel, সম্পাদক (২০০১), "Uncertainty principle", Encyclopedia of Mathematics, Springer Science+Business Media, আইএসবিএন 978-1-55608-010-4
- Matter as a Wave – একটি অনলাইন পাঠ্যপুস্তক থেকে একটি অধ্যায়
- Quantum mechanics: Myths and facts
- Stanford Encyclopedia of Philosophy entry
- Fourier Transforms and Uncertainty ম্যাথ পৃষ্ঠাগুলিতে
- aip.org: Quantum mechanics 1925–1927 – The uncertainty principle
- Eric Weisstein's World of Physics – Uncertainty principle
- John Baez on the time–energy uncertainty relation
- The certainty principle
- Common Interpretation of Heisenberg's Uncertainty Principle Is Proved False
টেমপ্লেট:পরিমাণ বলবিজ্ঞান বিষয় টেমপ্লেট:দৃষ্টবাদ
তথ্যসূত্র
- Heisenberg, W. (১৯২৭), "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", Zeitschrift für Physik (জার্মান ভাষায়), 43 (3–4): 172–198, doi:10.1007/BF01397280, বিবকোড:1927ZPhy...43..172H. . Annotated pre-publication proof sheet of Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, March 21, 1927.
- Kennard, E. H. (১৯২৭), "Zur Quantenmechanik einfacher Bewegungstypen", Zeitschrift für Physik (জার্মান ভাষায়), 44 (4–5): 326–352, doi:10.1007/BF01391200, বিবকোড:1927ZPhy...44..326K.
- Weyl, H. (১৯২৮), Gruppentheorie und Quantenmechanik, Leipzig: Hirzel
- Furuta, Aya (২০১২), "One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead", Scientific American
- Ozawa, Masanao (২০০৩), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A, 67 (4): 42105, arXiv:quant-ph/0207121
, doi:10.1103/PhysRevA.67.042105, বিবকোড:2003PhRvA..67d2105O - Werner Heisenberg, The Physical Principles of the Quantum Theory, p. 20
- Rozema, L. A.; Darabi, A.; Mahler, D. H.; Hayat, A.; Soudagar, Y.; Steinberg, A. M. (২০১২)। "Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements"। Physical Review Letters। 109 (10): 100404। arXiv:1208.0034v2
। doi:10.1103/PhysRevLett.109.100404। PMID 23005268। বিবকোড:2012PhRvL.109j0404R। - ইউটিউবে Indian Institute of Technology Madras, Professor V. Balakrishnan, Lecture 1 – Introduction to Quantum Physics; Heisenberg's uncertainty principle, National Programme of Technology Enhanced Learning
- Section 3.2 of Ballentine, Leslie E. (১৯৭০), "The Statistical Interpretation of Quantum Mechanics", Reviews of Modern Physics, 42 (4): 358–381, doi:10.1103/RevModPhys.42.358, বিবকোড:1970RvMP...42..358B . This fact is experimentally well-known for example in quantum optics (see e.g. chap. 2 and Fig. 2.1 Leonhardt, Ulf (১৯৯৭), Measuring the Quantum State of Light, Cambridge: Cambridge University Press, আইএসবিএন 0 521 49730 2
- Elion, W. J.; M. Matters, U. Geigenmüller & J. E. Mooij; Geigenmüller, U.; Mooij, J. E. (১৯৯৪), "Direct demonstration of Heisenberg's uncertainty principle in a superconductor", Nature, 371 (6498): 594–595, doi:10.1038/371594a0, বিবকোড:1994Natur.371..594E
- Smithey, D. T.; M. Beck, J. Cooper, M. G. Raymer; Cooper, J.; Raymer, M. G. (১৯৯৩), "Measurement of number–phase uncertainty relations of optical fields", Phys. Rev. A, 48 (4): 3159–3167, doi:10.1103/PhysRevA.48.3159, PMID 9909968, বিবকোড:1993PhRvA..48.3159S
- Caves, Carlton (১৯৮১), "Quantum-mechanical noise in an interferometer", Phys. Rev. D, 23 (8): 1693–1708, doi:10.1103/PhysRevD.23.1693, বিবকোড:1981PhRvD..23.1693C
- N.B. on precision: If and are the precisions of position and momentum obtained in an individual measurement and , their standard deviations in an ensemble of individual measurements on similarly prepared systems, then "There are, in principle, no restrictions on the precisions of individual measurements and , but the standard deviations will always satisfy ".[10]