வீச்சளவை சுழிவளவை தேற்றம்

நேரியல் இயற்கணிதத்தில் வீச்சளவை-சுழிவளவை தேற்றம் (Rank-Nullity Theorem) அடிப்படைத் தேற்றங்களில் முதன்மையானது. ஒரு முடிவுறு பரிமாணமுள்ள திசையன் வெளியிலிருந்து மற்றொரு திசையன் வெளிக்குப் போகும் ஒரு நேரியல் கோப்பைப் பற்றிய பற்பல விவரங்கள் இத்தேற்றத்திலிருந்துதான் தொடங்குகின்றன. ஒரு நேரியல் கோப்பு இனுடைய வீச்சின் பரிமாணம் வீச்சளவை என்றும் அதன் சுழிவின் பரிமாணம் சுழிவளவை என்றும் சொல்லப்படும். அவ்விரண்டு பரிமாணங்களின் கூட்டுத்தொகை dimU க்குச்சமம் என்பதுதான் இத்தேற்றம்.

தேற்றம்

ஒரு நேரியல் கோப்பு என்றும் U வின் பரிமாணம் p என்றும் கொள்.

இன் வீச்சு; அ-து விலுள்ள ஏதோ ஒரு க்கு

இன் சுழிவு, அ-து

= வீச்சளவை = இன் பரிமாணம்.

= சுழிவளவை = இன் பரிமாணம்.

என்றால்,

விளைவுகள்

  • ஒரு நேரியல் முழுக்கோப்பு என்றும் வின் பரிமாணம் என்றும் கொள்.

இப்பொழுது, ஒரு உள்ளிடுகோப்பாக இருந்தால், இருந்தால் தான்,

  • இரண்டும் முடிவுறு பரிமாணமுள்ள திசையன் வெளிகள் என்றால்,
ஒரு நேரியல் கோப்பு உள்ளிடுகோப்பாக இருந்தால், இருந்தால்தான், அது முழுக்கோப்பாக இருக்கும்.
  • இரண்டும் -பரிமாணமுள்ள திசையன் வெளிகள் என்றும், ஒரு நேரியல் கோப்பு என்றும் கொள்.
இப்பொழுது, பின்வரும் வாசகங்களெல்லாம் ஒன்றுக்கொன்று சமானம்:
(அ) ஒரு வழுவிலா கோப்பு; அ-து, ஒன்றுக்கொன்று இயைபான கோப்பு, மற்றும் முழுக்கோப்பு.
(ஆ) ஒரு உள்ளிடு கோப்பு
(இ) விலுள்ள நேரியல் சார்பற்ற உட்கணங்களை இன் நேரியல் சார்பற்ற உட்கணங்களாக உருமாற்றுகிறது.
(ஈ) வினுடைய ஒவ்வொரு அடுக்களத்தையும் இன் ஒரு அடுக்களமாக மாற்றுகிறது.
(உ) ஒரு முழுக்கோப்பு
(ஊ) இன் வீச்சளவை
(எ) இன் சுழிவளவை
(ஏ) க்கு இருப்பு உண்டு.
  • -பரிமாணமுள்ள மெய்யெண் திசையன் வெளி எதுவும் உடன் சம அமைவியமுள்ளது.
  • -பரிமாணமுள்ள சிக்கலெண் திசையன் வெளி எதுவும் உடன் சம அமைவியமுள்ளது.

துணை நூல்கள்

  • Serge Lang. Introduction to Linear Algebra. 1986. Springer Science, Inc. New York. ISBN 0-387-96205-0.
  • V. Krishnamurthy, V.P. Mainra & J.L. Arora.An Introduction to Linear Algebra. 1976. Affiliated East West Press PVT Ltd. New Delhi. ISBN 81-85095-15-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.