நேரியல் சார்பின்மை

கணிதத்தில் நேரியல் இயற்கணிதப்பிரிவில் நேரியல் சார்பின்மை(Linear independence) யும் நேரியல் சார்புடைமையும் (Linear dependence) அடிப்படைக் கருத்துகள். V என்ற திசையன் வெளி யில் என்ற திசையன்களின் கணம் நேரியல் சார்புடையது என்பதற்குப் பொருள், அவைகளில் ஏதாவதொன்று மற்றவைகளின் நேரியல் சேர்வு என்பதே. எடுத்துக்காட்டாக, இல்

{(1,0,0), (1,2,-3), (0,1,-3/2)} என்ற கணம் நேரியல் சார்புடையது. ஏனென்றால்,

(1,2,-3) = 1(1,0,0) + 2(0,1,-3/2).

S இல் எதுவுமே மற்றவைகளின் நேரியல் சேர்வாக இல்லையானால், அது நேரியல் சார்பின்மை என்ற பண்பை உடையது அல்லது நேரியல் சார்பற்றது எனப்படும். எடுத்துக்காட்டாக, இல்

{(1,1,0), (1,0,1), (0,1,1)} என்ற கணம் நேரியல் சார்பற்றது.

அதாவது, இதனில் எதுவும் மற்ற இரண்டின் நேரியல் சேர்வாக இருக்கமுடியாது. துல்லியமான மாதிரி நிறுவலுக்குக் கீழே பார்க்கவும்.

வரையறை

என்பது ஒரு திசையன் வெளி. அதனில் என்பது ஒரு உட்கணம், அல்லது திசையன்களின் குழு. இக்குழு நேரியல் சார்பின்மை உடையது என்பதன் இலக்கணம் பின்வருமாறு:

(*): சூனியத்திசையன் ஆகவேண்டுமானால் என்ற எல்லா அளவெண்களும் சூனியங்களாக இருக்கவேண்டும்.

(*) என்ற நிபந்தனைக்குக் கட்டுப்படவில்லையானால், S நேரியல் சார்புடையது எனப்படும்.

குறிப்பு: நேரியல் சார்பின்மை, நேரியல் சார்புடைமை ஆகிய பண்புகள் திசையன்களைக்கொண்ட ஒரு உட்கணம் அல்லது குழுவைப்பற்றியது. தனிப்பட்ட ஒரு திசையனின் பண்பல்ல.

விளக்கம்: S நேரியல் சார்புடையது என்றால் (*) என்ற நிபந்தனைக்குக் கட்டுப்படவில்லை என்று பொருள். அதாவது, ஏதாவது ஒரு, அல்லது சில, அளவெண்கள் சூனியமல்லாததாகவே இருக்க,

என்ற சமன்பாடும் உண்மையாக இருக்கும். இதனால் நமக்குக் கிடைப்பது, என்ற திசையன்களில் ஏதாவதொன்று மற்ற திசையன்களின் நேரியல் சேர்வு என்பதுதான்.

உட்கணத்தின் அளாவல்

V என்ற திசையன் வெளியில் S என்ற உட்கணத்தின் அளாவல் (Span) என்பது S இலுள்ள உறுப்புகளின் எல்லாமுடிவுறு நேரியல் சேர்வுகளும் கொண்ட கணம். அதற்குக் குறியீடு [S]. விரித்துச்சொன்னால்,

[S] = { ஏதாவது அளவெண்கள், n ஒரு இயல்பெண், மற்றும், }.

[S] ஒரு உள்வெளி. அது மட்டுமல்ல. அது Sஐ உள்ளடக்கிய மிகச்சிறிய உள்வெளி.

n = 1: [S] = { }. வடிவியல் பாங்கில் சொன்னால், இது தொடக்கப்புள்ளி வழியாகவும், வழியாகவும் செல்லும் நேர்கோடு.

n = 2: [S] = { }. வடிவியல் பாங்கில் சொன்னால், இது தொடக்கப்புள்ளி வழியாகவும், வழியாகவும் செல்லும் தளம்.

நேரியல் சார்பின்மையின் இதர பண்புகள்

V என்ற திசையன் வெளியில்

  • ஆக இருந்தால், இருந்தால் தான், நேரியல் சார்புடையதாக இருக்கும்.
  • இரண்டு திசையன்கள் களில் ஒன்று மற்றொன்றின் அளவெண் பெருக்கலாக இருந்தால், இருந்தால் தான், நேரியல் சார்புடையதாக இருக்கும்.
  • n திசையன்கள் களில் ஏதாவதொன்று மற்றவைகளின் அளாவலில் இருந்தால், இருந்தால்தான், அவை நேரியல் சார்புடையதாய் இருக்கும்.
  • ஒரு கணம் நேரியல் சார்பற்றதாயிருந்தால், அதனுடைய எந்த வெற்றற்ற உட்கணமும் நேரியல் சார்பற்றது.
  • ஒரு கணம் நேரியல் சார்புடையதாயிருந்தால், அதனுடைய எந்த மேற்கணமும் நேரியல் சார்புடையது.
  • { } என்பது திசையன்களின் ஒரு வரிசையுள்ள கணமானால், அது நேரியல் சார்புடையதாக இருந்தால், இருந்தால் தான், களில் ஏதாவதொன்று ( என்று சொல்லலாமே) அதற்கு முந்தினவைகளின், அதாவது, களின் அளாவலில் இருக்கும். குறியீட்டில் சொன்னால்

எடுத்துக்காட்டுகள்

1. : S = {(1,0,0), (0,1,0), (0,0,1)}.

என்று கொண்டால், நமக்குக்கிடைப்பது: .

ஆக, S நேரியல் சார்பற்றது.

2.  : S = {A=(1,1,0,2), B=(0,1,1,2), C=(0,0,1,1), D=(1,0,0,1)}

இதை சரியாக்குகிறது.

ஆக, S நேரியல் சார்புடையது. இதை உறுதிப்படுத்தும் வழியில் ஏதாவதொன்றை மற்றவைகளின் சேர்வாகச்சொல்லலாம்:

(1,0,0,1) = 1(1,1,0,2) -1(0,1,1,2) +1(0,0,1,1)

இதற்கு வடிவியற்பொருள் குறிப்பிடத்தக்கது: D என்ற புள்ளி A, B, C, ஆகிய மூன்று புள்ளிகளால் ஆக்கப்பட்ட தளத்தில் இருக்கிறது.

அணிக்கோட்பாட்டிலிருந்து ஒரு தேற்றம்

பார்க்கவும்: அணிகளின் அளவை

இலிருந்து m திசையன்கள் எடுத்து அவைகளை ஒரு அணி M இன் நிரல் திசையன்களாகக்கொண்டு, அவ்வணியைக் குறுவரிசைப்படி(row-reduced echelon form) ஆக்கினதும், வெற்றில்லாத நிரல்களின் எண்ணிக்கை r என்று கண்டால்,முதலில் எடுத்த m திசையன்களில் நேரியல் சார்பற்ற திசையன்களின் மிகப்பெரிய எண்ணிககை r ஆகும்.

இதன் கிளைத்தேற்றம்: இலிருந்து எடுக்கப்பட்ட n திசையன்களை நிரல் திசையன்களாகக்கொண்ட ஒரு n-பரிமாண சதுர அணி M இன் அணிக்கோவையின் மதிப்பு சூனியமானால், ஆனால் தான், அவை நேரியல் சார்புடையவை.

இதனால், எ.கா. #2 க்கு, அணிக்கோவை கருத்து மூலம் மாற்று வழி:

அணிக்கோவை

இதைச்சுருக்கி மதிப்பு கணித்தால், கிடைப்பது 0. ஆக நான்கு நிரல் திசையன்களும் நேரியல் சார்புடையது என்பது தேற்றத்திலிருந்து அறிகிறோம்.

முடிவுறாக்கணங்களின் நேரியல் சார்பின்மை

திசையன் வெளி V இன் ஒரு முடிவுறாக்கணம் S நேரியல் சார்பற்றது என்று சொல்லப்பட வேண்டுமென்றால், அதன் ஒவ்வொரு முடிவுள்ள உட்கணமும் நேரியல் சார்பற்றதாக இருத்தல் வேண்டும்.

எ.கா.: பல்லுறுப்புக் கோவைகளின் வெளியான ஐ எடுத்துக்கொள்வோம். இதனில் S = {1, x, x2, x3, .... } ஒரு நேரியல் சார்பற்ற முடிவுறாக்கணம்.

என்ற குறியீட்டுக்கு திசையன் வெளி கட்டுரையைப் பார்க்கவும்.

துணை நூல்கள்

  • Serge Lang. Introduction to Linear Algebra. 1986. Springer Science, Inc. New York. ISBN 0-387-96205-0.
  • V. Krishnamurthy, V.P. Mainra & J.L. Arora.An Introduction to Linear Algebra. 1976. Affiliated East West Press PVT Ltd. New Delhi. ISBN 81-85095-15-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.