முற்றொப்பு எண்

கணிதத்தில், ஒரு செங்கோண முக்கோணத்தின் மூன்று பக்கங்களும் விகிதமுறு எண்களாக இருந்து, அம்முக்கோணத்தின் பரப்பளவானது ஒரு நேர் முழு எண்ணாக இருக்குமானால், பரப்பளவாக இருக்கும் அந்த நேர் முழுஎண் முற்றொப்பு எண் அல்லது முற்றிசைவு எண் அல்லது சர்வசம எண் (congruent number) என அழைக்கப்படுகிறது[1]. முற்றொப்பு எண்களின் பொதுமைப்படுத்தப்பட்ட வரையறையானது, இதே பண்பினைக் கொண்ட விகிதமுறுஎண்களையும் முற்றொப்பு எண்களாகக் கொள்கிறது.[2]

பகுதி 6 உடன் ஒரு முக்கோணம்.

எடுத்துக்காட்டுகள்:

  • 20/3, 3/2, 41/6 (செம்பக்கம்) ஆகிய மூன்று விகிதமுறு எண்களைப் பக்கங்களாகக் கொண்ட செங்கோண முக்கோணத்தின் பரப்பு 5 சதுர அலகுகள் என்பதால், எண் 5 ஒரு முற்றொப்பு எண்.

இச் செங்கோண முக்கோணத்தின் பரப்பு:

  • இதேபோல கணக்கிட, 3, 4, 5 பக்கங்களைக் கொண்ட செங்கோண முக்கோணத்தின் பரப்பு 6 சதுர அலகுகள் என்பதால், எண் 6 ஒரு முற்றொப்பு எண்.

தொடர்முறை

எண்ணற்ற எண் அட்டவணை: n 120
(OEIS-இல் வரிசை A003273)
: அல்லாத எண்ணற்ற எண்
C: சதுர-இலவச சச்சரவு எண்
Q: சதுரக் காரணி கொண்ட எண்ணற்ற எண்
n 12345678
CCC
n 910111213141516
CCC
n 1718192021222324
QCCCQ
n 2526272829303132
QCCC
n 3334353637383940
CCCC
n 4142434445464748
CQCC
n 4950515253545556
QCQCQ
n 5758596061626364
QCCQ
n 6566676869707172
CCCC
n 7374757677787980
CCCQ
n 8182838485868788
QCCCQ
n 8990919293949596
QCCCQ
n 979899100101102103104
CCC
n 105106107108109110111112
CCCQ
n 113114115116117118119120
QQCCQ

முற்றொப்பு எண்கள் 5 இல் இருந்து தொடங்குகின்றன. முற்றொப்பு எண்ககளின் தொடர்முறை:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, … (OEIS-இல் வரிசை A003273)

முடிவுகள்

  • q ஒரு முற்றொப்பு எண்; மேலும் s ஒரு இயல் எண் எனில், s2q ஒரு முற்றொப்பு எண்ணாகும். இதிலிருந்து, சுழியற்ற விகிதமுறு எண் q ஆனது, என்ற குலத்தில், தனது எச்சத்தைப் பொறுத்துதான் முற்றொப்பு எண்ணாக இருக்கும் என்பதை அறியலாம்.

இந்த குலத்தின் ஒவ்வொரு எச்சத் தொகுதியிலும் ஒரேயொரு வர்க்கக்காரணியற்ற முழுஎண் மட்டுமே இருக்கும் என்பதால் முற்றொப்பு எண்களைக் காண முற்படும்போது வர்க்கக்காரணியற்ற நேர் முழுஎண்களில் முயற்சிக்கலாம்.

  • பெர்மாவின் பெயரால் அழைக்கப்படும் பெர்மாவின் செங்கோண முக்கோணத் தேற்றத்தின்படி, வர்க்க எண்கள் முற்றொப்பு எண்களாக இருக்காது.
  • p என்ற பகா எண்ணுக்குக் கீழ்க்காணும் முடிவுகள் உண்மையாகும் எனக் கண்டறியப்பட்டுள்ளது[3]:
  • p ≡ 3 (மாடுலோ 8) எனில், p முற்றொப்பு எண் அல்ல; ஆனால் 2p ஒரு முற்றொப்பு எண்ணாகும்.
  • p ≡ 5 (மாடுலோ 8) எனில், p ஒரு முற்றொப்பு எண்.
  • p ≡ 7 (மாடுலோ 8) எனில், p , 2p இரண்டுமே முற்றொப்பு எண்கள்.
  • மேலும் 5, 6, 7 (mod 8) ஆகிய முற்றொப்புத் தொகுதிகள் ஒவ்வொன்றிலும் முடிவில்லா எண்ணிக்கையில் வர்க்கக்காரணிகளற்ற முற்றொப்பு எண்கள் உள்ளன என்றும் கண்டறியப்பட்டுள்ளது. இந்த முற்றொப்பு எண்கள் ஒவ்வொன்றிலும் உள்ள பகாக் காரணிகளின் எண்ணிக்கை k ஆகும். (இங்கு k ஏதேனுமொரு எண்).[4]

மேற்கோள்கள்

  1. Weisstein, Eric W., "Congruent Number", MathWorld.
  2. Neal Koblitz (1993). Introduction to Elliptic Curves and Modular Forms. New York: Springer-Verlag. பக். 3. பன்னாட்டுத் தரப்புத்தக எண்:0-387-97966-2.
  3. Paul Monsky (1990). "Mock Heegner Points and Congruent Numbers". Mathematische Zeitschrift 204 (1): 45–67. doi:10.1007/BF02570859.
  4. Tian, Ye (2012). Congruent Numbers and Heegner Points. http://arxiv.org/pdf/1210.8231v1.pdf.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.