மின்காந்தம்
மின்காந்தம் என்பது மின்னோட்டம் பாய்வதன் மூலம் காந்தப் புலத்தை உருவாக்கும் காந்தம் ஆகும். இங்கு மின்னோட்டம் நிறுத்தப்படும்போது காந்தப்புலம் மறைந்துவிடும். மோட்டர்கள், மின்பிறப்பாக்கிகள், அஞ்சல் சுற்றுக்கள், ஒலிபெருக்கிகள், வன்வட்டுக்கள், காந்தப் பரிவுப் படிமவாக்கல் இயந்திரங்கள், அறிவியல் கருவிகள், காந்தவியல் பிரித்தெடுப்பு சாதனங்கள் போன்ற மின் சாதனங்களில் மின்காந்தங்கள் ஒரு துணை அங்கமாகப் பயன்படுத்தப்படுகிறது. மேலும் கைத்தொழிற்துறையில் அதிக அடை கொண்ட இரும்புப் பாளங்களைத் தூக்கும் பணியில் பயன்படுத்தப்படுகிறது.


கம்பியொன்றில் பாயும் மின்னோட்டமானது அக்கம்பியைச் சுற்றி காந்தப்புலமொன்றை உருவாக்குகிறது. காந்தப்புலத்தை ஒருமுகப்படுத்துவதற்காக மின்காந்தமொன்றில், கம்பியானது முறுக்குகள் மிகவும் அருகருகே இருக்கும் வகையில் ஒரு சுருளாகச் சுற்றப்பட்டிருக்கும். அப்போது கம்பியின் ஒவ்வொரு முறுக்கினாலும் உண்டாக்கப்படும் காந்தப்புலமானது சுருளின் மையத்தினூடாகச் சென்று ஒரு உறுதியான காந்தப்புலத்தைத் தோற்றுவிக்கிறது. குழாய் வடிவிலான கம்பிச்சுருள் வரிச்சுருள் எனப்படும். சுருளின் உள்ளே மெல்லிரும்பு போன்ற அயக்காந்தப் பொருளை வைப்பதன் மூலம் வலிமையான காந்தப்புலத்தை உருவாக்க முடியும். அயக்காந்தப் பொருளின் காந்த ஊடுபுகவிடுதிறன் உயர்வு என்பதால் சாதாரணச் சுருள் உருவாக்கும் காந்தப்புல வலிமையிலும் அயக்காந்த அகணியின் காந்தப்புல வலிமை ஆயிரம் மடங்கு அதிகமாகும். இந்த அயக்காந்த அகணி அல்லது இரும்பு அகணி மின்காந்தமென அழைக்கப்படும்.

கம்பிச் சுருளினூடான காந்தப்புலத்தின் திசையை வலக்கை விதிமூலம் துணியலாம்.[1][2][3][4][5][6] அதாவது, வலக்கையின் விரல்கள் கம்பிச்சுருளினூடு பாயும் மின்னோட்டத்தின் திசையில் வளைக்கப்படுமாயின் வலக்கைப் பெருவிரலானது கம்பிச்சுருளின் மையத்தினூடாகப் பாயும் காந்தப்புலத்தின் திசையைத் தரும். காந்தப்புலக்கோடுகள் வெளியேறுவதாகத் தோற்றும் முனைவு அம்மின்காந்தத்தின் வடமுனைவாக வரையறுக்கப்படும்.
வழங்கப்படும் மின்னோட்டத்தின் அளவை ஆளுவதன் மூலம் உருவாகும் காந்தப்புலத்தின் அளவை ஒரு பரந்த வீச்சுக்கு, விரைவாக மாற்றக்கூடியதாக இருப்பது நிலைபேறான காந்தத்துடன் ஒப்பிடுகையில் மின்காந்தத்தின் முக்கிய பயன்பாடாகும். இருப்பினும் காந்தப்புலத்தைப் பேணுவதற்கு தொடர்ச்சியான மின்சக்தி வழங்கல் அவசியமாகும்.
இரும்பு அகணியின் செயற்பாடு
காந்தத்தின் அகணிப்பகுதியின் பொருளானது (வழமையாக இரும்பு), சிறிய காந்தங்களைப் போல் செயற்படும் ”காந்த ஆட்சிப்பகுதிகள்” எனப்படும் சிறு வலயங்களால் உருவாக்கப்பட்டுள்ளது. மின்காந்தத்தில் மின்னோட்டம் பாய்வதற்கு முன் இக்காந்த ஆட்சிப்பகுதிகள் எழுமாறான திசைகளைச் சுட்டியவாறு காணப்படும். ஆகவே அவற்றின் சிறிய காந்தப் புலங்கள் ஒன்றையொன்று சமப்படுத்திக் கொள்ளும். ஆகவே, இரும்பில் பெரியளவில் காந்தப்புலம் உருவாக மாட்டாது. அகணியின் மேல் சுற்றப்பட்டுள்ள கம்பியில் மின்னோட்டம் பாயும்போது சுருளில் உருவாகும் காந்தப்புலம் மெல்லிரும்பு அகணியை அதிரச் செய்வதன் மூலம் காந்த ஆட்சிப்பகுதிகளை காந்தப்புலத்துக்குச் சமாந்தரமாக ஒழுங்கமைக்கிறது. எனவே அவற்றின் சிறிய காந்தப்புலங்கள் ஒன்றுசேர்ந்து காந்தத்தைச் சூழ, பெரிய காந்தப்புலத்தைத் தோற்றுவிக்கின்றன. மின்னோட்டம் அதிகரிக்கும்போது, காந்த ஆட்சிப்பகுதிகள் ஒழுங்கமையும் வீதமும் அதிகரிப்பதால், காந்தப்புலத்தின் வலிமையும் அதிகரிக்கும். எனினும் எல்லாக் காந்த ஆட்சிப்பகுதிகளும் இவ்வாறு ஒழுங்கமைந்த பின்னர் மின்னோட்டத்தின் அதிகரிப்பு பெரியளவில் காந்தப்புலத்தை அதிகரிக்க மாட்டாது. இந்நிலை "நிரம்பல் நிலை" என அழைக்கப்படுகிறது.
சுருளில் உள்ள மின்சாரம் துண்டிக்கப்படும்போது பெரும்பாலான ஆட்சிப்பகுதிகள் தமது ஒழுங்கமைவை இழந்து எழுமாறான நிலையை அடையும். ஆயினும் சில ஒழுங்கமைவுகள் மாற்றமடையாது காணப்படும். ஏனெனில் இவ்வாட்சிப்பகுதிகள் தமது திசையை மாற்றுவதில் பாரிய எதிர்ப்பை எதிர்நோக்குகின்றன. இதனால் மின்காந்தத்தின் அகணி ஒரு வலுக்குறைந்த நிலைபேறான காந்தமாக மாறுகின்றது. இச்செயற்பாடு காந்தப்பின்னிடைவு எனப்படுகிறது. எஞ்சியுள்ள காந்தப்புலம் மீந்த காந்தப்புலம் எனப்படும். இவ்வெஞ்சிய காந்தப்புலமானது காந்த நீக்கல்முறை மூலம் அகற்றப்படலாம்.


வரலாறு

1820ல் டேனிய விஞ்ஞானியான ஆன்சு கிருத்தியான் ஆர்ஸ்டெட், கடத்தியொன்றினூடு பாயும் மின்னோட்டம் அக்கடத்தியைச் சூழ காந்தப்புலத்தை உருவாக்குவதைக் கண்டறிந்தார். 1824ல் பிரித்தானிய விஞ்ஞானியான வில்லியம் ஸ்டேர்ஜன் மின்காந்தத்தைக் கண்டுபிடித்தார்.[7][8] அவரது முதலாவது மின்காந்தம் காவலிடப்படாத செப்புக்கம்பியினால் 18 தடவைகள் சுற்றப்பட்ட குதிரை லாட வடிவிலான இரும்புத்துண்டினால் ஆக்கப்பட்டிருந்தது. இரும்பு, வார்ணிசு பூச்சினால் காப்பிடப்பட்டிருந்தது. சுருளினூடாக மின்னோட்டமொன்று பாயும்போது, இரும்பு காந்தமாக்கப்பட்டதோடு ஏனைய இரும்புத்துண்டுகளையும் கவர்ந்தது. மின்னோட்டம் நிறுத்தப்பட்டபோது அது காந்தத்தன்மையை இழந்தது. இத்துண்டு வெறுமனே 200 கிராம் திணிவைக் கொண்டிருந்தபோதும், ஒரு தனிக்கல மின்கலத்துடன் இணைக்கப்படும்போது 4 கிலோகிராம் திணிவை உயர்த்தக்கூடியதாய் இருந்தது. இதன் மூலம் மின்காந்தத்தின் வலிமையை ஸ்டேர்ஜன் உணர்த்தினார். எவ்வாரயினும் ஸ்டேர்ஜனின் மின்காந்தம் நலிந்ததாக இருந்தது. ஏனெனில், பயன்படுத்தப்பட்ட செப்புக்கம்பி காப்பிடடப்படாமல் இருந்தமையால், அகணியைச் சுற்றி செப்புக்கம்பியை ஒருதடவை மாத்திரமே சுற்றக்கூடியதாய் இருந்தது. மேலும், கம்பியின் ஒவ்வொரு சுற்றுக்கிடையிலும் இடைவெளிகள் விடவேண்டியிருந்தது. இதனால், அகணியைச் சுற்றி சுற்றப்படும் சுற்றுக்களின் எண்ணிக்கை குறைக்கப்பட்டது. 1827ன் துவக்கத்தில் அமெரிக்க விஞ்ஞானியான ஜோசப் ஹென்றி, மின்காந்தத்தை மேம்படுத்தினார்.[9] பட்டு நூலினால் காவலிடப்பட்ட கம்பிகளைப் பயன்படுத்தியதன் மூலம், அவரால் அகணியின் மீது அதிக படைகளில் கம்பியைச் சுற்றமுடிந்தது. இதனால் ஆயிரக்கணக்கான சுற்றுக்களைக்கொண்ட வலிமையான காந்தங்களை அவரால் உருவாக்க முடிந்தது. இவற்றுள் ஒன்று, 936 கி. கி. திணிவை உயர்த்தக்கூடியதாய் இருந்தது. மின்காந்தம் முதலில் முதன்மையாகக் தந்தி ஒலிப்பானில் பயன்படுத்தப்பட்டது. அயக்காந்த அகணி எவ்வாறு இயங்குகிறது என்பது பற்றிய காந்த ஆட்சிக் கொள்கை 1906ல் பிரெஞ்சு புவியியலாளரான பியரி ஏனஸ்ட் வெய்ஸ் என்பவரால் முதன்முதலில் முன்மொழியப்பட்டது. மேலும் அயக்காந்தவியலின் முழுமையான "சக்திச்சொட்டுப் பொறியியல் கொள்கை" 1920களில் வேர்னர் ஹெய்சன்பர்க், லெவ் லன்டௌ, ஃபீலிக்ஸ் ப்ளொச் மற்றும் பலரால் ஆராயப்பட்டது.
மின்காந்தத்தின் பயன்பாடுகள்
மின்காந்தங்கள் பெரும்பாலும் பின்வரும் மின் மற்றும் மின்பொறியியல் துணைக்கருவிகளில் பயன்படுத்தப்படுகிறது.

- பொறியியல் மற்றும் தொழில்நுட்பம் - மோட்டர்கள், மின்பிறப்பாக்கிகள் மற்றும் காந்தத் தூக்கல் போக்குவரத்து
- நிலைமாற்றிகள்
- மின்மணி
- ஒலிபெருக்கி
- காந்தப் பதிவுச் சாதனங்கள்
- அஞ்சல் சுற்று
- துகள் முடுக்கி
- மின்காந்தப் பூட்டு
- காந்தப் பரிவுப் படிமவாக்கல் இயந்திரங்கள் மற்றும் திணிவுப் பகுப்பு மானி போன்ற விஞ்ஞான துணைக்கருவிகள்
- காந்தப் பிரித்தெடுப்பு
- பாரந்தூக்கிகள்
- மருத்துவம் - காந்த அதிர்வு அலை வரைவு
அயக்காந்த மின்காந்தங்களின் பகுப்பாய்வு
மின்காந்தங்களின் காந்தப்புலம் பொதுவாக அம்பியரின் விதியிலிருந்து தரப்படும்:
அதாவது, காந்தப்புலத்தில் யாதேனுமொரு மூடியசுற்றைச் சுற்றிய காந்தமாக்கும் புலம் H இன் தொகையீடு அச்சுற்றினூடாகப் பாயும் மின்னோடத்தின் கூட்டுத்தொகைக்குச் சமனாகும். இதுதவிர பியோ சவார்ட்டின் விதியும் பயன்படுத்தப்படுகிறது. இது சிறு கடத்தியில் பாயும் மின்னோட்டம் காரணமாக உருவாகும் காந்தப்புலத்தைத் தரும். அயக்காந்தப்பொருள்களால் உருவாகும் காந்தப்புலம் மற்றும் விசை ஆகியவற்றைக் கணிப்பிடுவது கடினமானதாகும். இதற்கு இரு காரணங்கள் உள்ளன. முதற் காரணம், புலவலிமை வெவ்வேறு புள்ளிகளில் சிக்கலான முறையில் மாறுபடுவதாகும். இதனை முக்கியமாக அகணிக்கு வெளியிலும், வளியிடைவெளிகளிலும் அவதானிக்கலாம். இங்குக் கீற்றணிப் புலங்களும் (fringing fields), மின்னொழுகு பாயமும் (leakage flux) கவனத்தில் கொள்ளப்பட வேண்டும். அடுத்து, காந்தப்புலமும் (B) விசையும் மின்னோட்டத்துடன் நேர்விகிதசமனாக மாறுவதில்லை. இவை பயன்படுத்தப்படும் அகணிப்பொருளின் காந்தப்புலத்துக்கும் (B), காந்தமாக்கும் புலத்துக்கும் (H) இடையிலான தொடர்பில் தங்கியிருக்கும்.
சொற்களின் வரைவிலக்கணம்
சதுர மீற்றர் | அகணியின் குறுக்குவெட்டுப் பரப்பு | |
டெஸ்லா | காந்தப் புலம் (காந்தப்பாய அடர்த்தி) | |
நியூற்றன் | காந்தப்புலத்தால் பிரயோகிக்கப்படும் விசை | |
மீற்றருக்கு அம்பியர் | காந்தமாக்கும் புலம் | |
அம்பியர் | கம்பிச்சுருளில் பாயும் மின்னோட்டம் | |
மீற்றர் | காந்தப்புலப் பாதையின் மொத்த நீளம் | |
மீற்றர் | அகணிப் பொருளில் உள்ள காந்தப்புலப் பாதையின் நீளம் | |
மீற்றர் | வளியிடைவெளியில் உள்ள காந்தப்புலப் பாதையின் நீளம் | |
அம்பியர் மீற்றர் | மின்காந்தத்தின் முனைவு வலிமை | |
சதுர அம்பியருக்கு நியூற்றன் | மின்காந்த அகணிப் பொருளின் உட்புகவிடுதிறன் | |
சதுர அம்பியருக்கு நியூற்றன் | வெற்றிடத்தின் (அல்லது வளி) உட்புகவிடுதிறன் = 4π(10−7) | |
- | மின்காந்த அகணிப் பொருளின் தொடர்பு உட்புகவிடுதிறன் | |
- | மின்காந்தத்திலுள்ள கம்பியின் முறுக்குகளின் எண்ணிக்கை | |
மீற்றர் | இரு மின்காந்தங்களின் முனைவுகளுக்கிடையிலான தூரம் | |
மேற்கோள்கள்
- Olson, Andrew (2008). Right hand rules. Science Buddies. http://www.ece.unb.ca/Courses/EE2683/AW/hand_rules.pdf. பார்த்த நாள்: 2008-08-11.
- Wilson, Adam (2008). "Hand Rules". Course outline, EE2683 Electric Circuits and Machines. Faculty of Engineering, Univ. of New Brunswick. பார்த்த நாள் 2008-08-11.
- Gussow, Milton (1983). Schaum's Outline of Theory and Problems of Basic Electricity. New York: McGraw-Hill. பக். 166. பன்னாட்டுத் தரப்புத்தக எண்:978-0-07-025240-0. http://books.google.com/?id=T8t4MwtiLioC&pg=PA166.
- Millikin, Robert; Edwin Bishop (1917). Elements of Electricity. Chicago: American Technical Society. பக். 125. http://books.google.com/?id=dZM3AAAAMAAJ&pg=PA125.
- Fleming, John Ambrose (1892). Short Lectures to Electrical Artisans, 4th Ed.. London: E.& F. N. Spon. பக். 38–40. http://books.google.com/?id=wzdHAAAAIAAJ&pg=PA38.
- Fleming, John Ambrose (1902). Magnets and Electric Currents, 2nd Edition. London: E.& F. N. Spon. பக். 173–174. http://books.google.com/?id=ASUYAAAAYAAJ&pg=PA173.
- Sturgeon, W. (1825). "Improved Electro Magnetic Apparatus". Trans. Royal Society of Arts, Manufactures, & Commerce (London) 43: 37–52. cited in Miller, T.J.E (2001). Electronic Control of Switched Reluctance Machines. Newnes. பக். 7. பன்னாட்டுத் தரப்புத்தக எண்:0-7506-5073-7. http://books.google.com/?id=E8VroIWyjB8C&pg=PA7.
- Windelspecht, Michael. Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 19th Century, xxii, Greenwood Publishing Group, 2003, ISBN 0-313-31969-3.
- Sherman, Roger (2007). "Joseph Henry's contributions to the electromagnet and the electric motor". The Joseph Henry Papers. The Smithsonian Institution. பார்த்த நாள் 2008-08-27.
வெளியிணைப்புக்கள்
- Magnets from Mini to Mighty: Primer on electromagnets and other magnets National High Magnetic Field Laboratory
- Magnetic Fields and Forces Cuyahoga Community College
- Fundamental Relationships School of Geology and Geophysics, University of Oklahoma