வளையத்தில் சீர்மம் (கணிதம்)
வளையம் என்பது கணிதத்தில் ஒரு கணித அமைப்பு. அமைப்புகள் பல வகைப்படும். அவைகளில் இயற்கணித அமைப்பைச் சேர்ந்தது வளையம். வளையத்திற்குள் சீர்மம் (Ideal in a Ring) என்ற கருத்து மிகப்பயனுள்ள கருத்து. 19வது நூற்றாண்டிலேயே டெடிகிண்ட் (1831 – 1916) இக்கருத்துக்களை எண்களுடைய கணங்களுக்குக் கையாண்டிருக்கிறார். இருபதாவது நூற்றாண்டின் தொடக்கத்தில் ஜெர்மனியில் கெட்டிங்கனில் ஹில்பர்ட்டுடன் ஆய்வுகள் செய்த நோய்தர் என்ற அம்மையாரின் பற்பல ஆய்வுகளிலிருந்து தோன்றிற்று நுண்பியப்படுத்தப்பட்ட இந்த சீர்மம் என்ற கோட்பாடு.
உள்ளுணர்வுக்கண்ணோட்டம்
எல்லா முழு எண்களின் கணம் Z. சாதாரணக் கூட்டல், பெருக்கலுக்கு இது ஒரு வளையமாகிறது. இதனில் ஒரு உட்கணம், எடுத்துக்காட்டாக, 3 இன் எல்லா மடங்குகளையும் கொண்டது, அதற்கு 3Z என்று பெயரிடுவோம். குறியீட்டு முறையில் சொன்னால்
Z = { .... -3. -2, -1, 0, 1, 2, 3, .... }
3Z = { ... -9, -6, -3, 0, 3, 6, 9, ... } .
இங்கு Z தாய்க்கணம்; 3Z உட்கணம். தாய்க் கணத்திலிருக்கும் எந்த உறுப்பாலும் உட்கணத்திலிருக்கும் எதைப் பெருக்கினாலும் நாம் திரும்பி உட்கணத்திற்குள்ளேயே வருகிறோம். இதை தத்துவரீதியாக, குறிப்பிட்ட உட்கணம் வெளியிலிருந்து வரும் எந்த பெருக்கலுக்கும் நிலையாக (stable) இருக்கிறது என்று சொல்லப்படும். இப்படி நிலையாக இருக்கும் உட்கணத்திற்கு சீர்மம் என்று பெயர். இப்பொழுது இதை நுண்பியப்படுத்தலாம்.
சீர்மத்தின் வரையறை
{R, +, . } என்ற ஒரு வளையத்தில், S என்ற ஒரு உட்கணம் பின்வரும் இரு நிபந்தனைகளுக்கு உட்பட்டால் அது ஒரு சீர்மம் எனப்படும்:
(S-1): { S, +} ஒரு உட்குலமாக இருக்கவேண்டும்.
(S-2): R இல் உள்ள எந்த r க்கும், S இலுள்ள s எதுவாயிருந்தாலும், r . s என்ற உறுப்பு S இல் இருந்தாகவேண்டும்.
எடுத்துக்காட்டுகள்
முழு எண்களாலான {Z, + , . } என்ற வளையத்தில், p என்ற பகாஎண்ணுக்கு,
p Z = { … -3p, -2p, -p, 0 , p, 2p, 3p, … }ஒரு சீர்மம் ஆகிறது.
தொடர் சார்பு வளையம் C[a, b] இல் பின்வரும் S என்ற கணத்தைப்பார்ப்போம். [a, b] இல் x0 ஒரு குறிப்பிட்ட புள்ளி.
S = { f € C[a, b] | f(x0) = 0}.
அதாவது, C[a,b] இல் எந்தெந்த சார்புகள் x0 என்ற புள்ளியில் சுழிக்கின்றனவோ (vanish at x0) அவையெல்லாம் சேர்ந்தது தான் S. இந்த S C[a,b] இல் ஒரு முக்கியமான சீர்மம்.