உட்தொடு முக்கோணம்

ஒரு முக்கோணத்தின் உட்தொடு முக்கோணம் அல்லது தொடு முக்கோணம் (Intouch triangle or contact triangle) என்பது ஒரு முக்கோணத்தின் உள்வட்டமானது அம்முக்கோணத்தின் பக்கங்களைத் தொடும் மூன்று புள்ளிகளையும் உச்சிகளாகக் கொண்ட முக்கோணம் ஆகும். உட்தொடு முக்கோணமானது கெர்கோன் முக்கோணம் ( Gergonne triangle) எனவும் அழைக்கப்படுகிறது.

ΔABC-ன் உள்வட்டம் (நீலம்), உள்மையம் (நீலம்-I ), கெர்கோனின் தொடுமுக்கோணம் (சிவப்பு- ΔTaTbTc) மற்றும் கெர்கோன் புள்ளி (பச்சை-Ge)

எடுத்துக்காட்டாக, -ன் உள்வட்டமானது முக்கோணத்தின் பக்கங்களைத் தொடும்புள்ளிகள்:

TA , உச்சி A -க்கு எதிர்ப்பக்கத்தின் தொடு புள்ளி;
TB , உச்சி B -க்கு எதிர்ப்பக்கத்தின் தொடு புள்ளி
TC , உச்சி C -க்கு எதிர்ப்பக்கத்தின் தொடு புள்ளி

இம் மூன்று தொடுபுள்ளிகளையும் உச்சிகளாகக் கொண்ட முக்கோணம் உட்தொடு முக்கோணமாகும். -ன் உள்வட்டமானது TATBTC -க்கு சுற்றுவட்டமாக இருக்கும்.

-ன் பக்கங்கள் -க்கு வரையப்பட்ட வெளிவட்டங்களின் தொடு புள்ளிகளை உச்சிகளாகக் கொண்ட முக்கோணம், வெளித்தொடு முக்கோணம் ஆகும். -ன் உட்கோண இருசமவெட்டிகளானது முக்கோணத்தின் பக்கங்களை வெட்டும் புள்ளிகளால் உருவாகும் முக்கோணம், உள்மைய முக்கோணம் (incentral triangle) எனப்படும்.

உட்தொடு முக்கோணத்தின் உச்சிகள்

உட்தொடு முக்கோணத்தின் உச்சிகளின் முக்கோட்டு ஆட்கூறுகள் (Trilinear coordinates)

பக்க நீளங்கள்

மூல முக்கோணம் இன் பக்கநீளங்கள் a, b, c மற்றும் கோணங்கள் A, B, C எனில் உட்தொடு முக்கோணத்தின் பக்கநீளங்கள்:

.

பரப்பளவு

உட்தொடு முக்கோணத்தின் பரப்பளவு காணும் வாய்ப்பாடுகள்:

, r, s, R முறையேமூல முக்கோணம் இன் பரப்பளவு, உள்வட்ட ஆரம், அரைச்சுற்றளவு, சுற்றுவட்ட ஆரம் ஆகும். வெளித்தொடு முக்கோணம், உட்தொடு முக்கோணம் இரண்டின் பரப்பளவும் சமமானவை.

கெர்கோன் புள்ளி

ATA, BTB மற்றும் CTC கோடுகள் மூன்றும் ஒரு புள்ளியில் சந்திக்கின்றன. அப்புள்ளியானது, -இன் கெர்கோன் புள்ளி GeX(7) எனப்படும்.[1] -இன் கெர்கோன் புள்ளியானது நாகெல் புள்ளியின் ஐசோட்டாமிக் இணையியமாகவும் உட்தொடு முக்கோணத்தின் சமச்சரிவு இடைக்கோட்டுப் புள்ளியாகவும் இருக்கும். மேலும் கெர்கோன் புள்ளி ஒரு முக்கோண மையமாகும்.

கெர்கோன் புள்ளியின் ஆட்கூறுகள்

கெர்கோன் புள்ளியின் முக்கோட்டு ஆட்கூறுகள்:

,
(அல்லது சைன் விதியைப் பயன்படுத்தி)
.

மேற்கோள்கள்

  1. Dekov, Deko (2009). "Computer-generated Mathematics : The Gergonne Point". Journal of Computer-generated Euclidean Geometry 1: 114.. Archived from the original on 2010-11-05. http://web.archive.org/web/20101105045604/http://www.dekovsoft.com/j/2009/01/JCGEG200901.pdf.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.