Whole body vibration

Whole body vibration (WBV) is a generic term used when vibrations (mechanical oscillations) of any frequency are transferred to the human body. Humans are exposed to vibration through a contact surface that is in a mechanical vibrating state. Humans are generally exposed to many different forms of vibration in their daily lives. This could be a driver's seat, a moving train platform, through a power tool, a training platform, or one of countless other devices.[1] It is a potential form of occupational hazard, particularly after years of exposure.

When high frequency vibrations[2] (above 50 Hz) enter through the hands, occupational safety concerns may arise. For example, working with a jackhammer has been known to develop vibration white finger. Exposures and limits have been estimated in the ISO 5349-1 for hand-transmitted vibration.[3]

Whole body vibration training as a form of physical exercise can offer some fitness and health benefits, but it is not clear if it is as beneficial as regular physical exercise.[4] A 2018 meta-analysis has shown that whole body vibration can improve bone mineral density in the lumbar spine of postmenopausal women as well as the femoral neck of postmenopausal women younger than 65.[5]

As a hazard

Humans are sensitive to mechanical oscillations ranging in frequency from well below 1 Hz up to 100 Hz.[6] Lower frequencies of vibration lead to human motion sickness[7] while higher frequencies can lead to general annoyance and discomfort. The minimization of discomfort due to vehicle vibration is important in the automotive industry where ride quality is important. Discomfort and even pain may extremely prevalent in situations where medically injured patients are transported. The discomfort due to vibration can estimated in various environments.[8][9]

Workplace exposure

Workplace exposures to whole-body vibrations for long durations can lead to musculoskeletal problems of many kinds.[10] Problems of the neck and lower back in particular can be common for operators of heavy equipment including construction, forestry, agriculture, and trucking. Other occupations where whole-body vibrations may be present include aircraft operators, sea vessel workers, drivers of public transportation like trains and buses.

Farmers with long-term exposure to whole body vibration and mechanical shocks have a higher prevalence of back pain (compared to those not exposed to vibration), and the prevalence increases with vibration dose.[11] Long-term exposure affecting the whole body leads to spinal degeneration (spondylosis) and increased risk of low back pain.[12][13]

Factors that affect the occupational exposure to whole-body vibration include the frequency of vibrations, the magnitude of vibrations, the daily exposure to vibrations, the standing or seating posture of the operator, the direction of the vibration, and how tightly coupled the human is to the source of the vibration.[14] Exposure limits and estimates have been characterized in the ISO 2631-1[15] for whole-body vibration. Measurements of vibration exposure are usually taken at the human/vibration interface.

Patient transport

Injured patients can be exposed to shocks and vibrations during transport which can worsen patient conditions due to involuntary motions of the body. Many forms of immobilization devices are used to limit this motion with varying degrees of success.[16][17][18] Common modes of patient transport include hand carried stretcher (litter), ground ambulance, and air medical services which all contain multiple forms of shocks and whole-body vibrations.

Measurement

Measurements are taken with accelerometers to estimate the amount of vibration exposure to the human body. These measurements are taken at the human body or at the vibration source or surface.[14] Measurements of different directions are taken to relate the motion direction with the response of the human body.[19] Specifically, transfer functions can be used to determine the human response to the vibration.[20] Measurement techniques for estimating exposures to whole body vibrations and hand-arm vibration have been developed in International Standards.[21][22]

Vibration training

Vibration training is the deliberate exposure to the body of varying frequencies/amplitudes/forces using certain joint angles for any limited time (approximately 1 minute sets). It is also known as vibration therapy,vibrotherapy, biomechanical stimulation (BMS), mechanostimulation and biomechanical oscillation (BMO). It employs low amplitude, low frequency mechanical stimulation. It can be pivotal/oscillating (vibrating from side to side) or lineal (vibrating up and down).

History

The immediate predecessor of modern vibration training is Rhythmic Neuromuscular Stimulation (RNS). In former East Germany Biermann was experimenting with the use of cyclic massage and its effects on trunk flexion back in the sixties (Biermann, 1960[23]).

The technique has been tested on turkeys in the hope of finding a benefit that could be used for astronauts.[24] Engineering issues came into play when they tried to upgrade the test machine to support the weight of a human being. Once the vibration intensity grew strong enough to lift over 40 kg, fractures appeared in the steel. The first bed-rest study using a vibration training device for humans was done by the European Space Agency (ESA) in 2003 in Berlin[25] (Berlin Bedrest Study, BBR). The same technology was then used in several parabolic flight campaigns of the DLR (German Aerospace Agency) starting in 2006 where the feasibility of use of a lightweight vibration training device under microgravity conditions was demonstrated and ein 2009 and 2010 where basic research on influence of microgravity on vibration training effects was investigated.[26][27]

Since 1961, NASA has been testing adding light vibrations to exercise equipment and systems to minimize vibration transmission of existing exercise devices to the space station, like the Treadmill Vibration Isolation System (TVIS) and the Cycle Ergometer Vibration Isolation System (CEVIS). Any company referencing NASA directly in its marketing campaigns is misleading and has no relevance to the discipline of vibration training.

The first Galileo machine patent was filed in 1996 in the same year the first Galileo device was commercially available.[28][29] In 1996, the first Galileo vibrating dumbbell patent was filed.[30]

Training effects

While it is not yet clear if whole body vibration produces the same health benefits as regular physical exercise, [4] it has been proven to provide significant health benefits, including decreased resting heart rate and blood pressure and improved cardiac function.[31]

While it has been shown that whole body vibration at high frequencies can cause low back pain, studies have illustrated that at low frequencies (below 20 Hz), it can be effective in reducing back pain. A 2019 randomized control trial indicated that low frequency vibration can help people with non specific low back pain (NSLBP) by reducing symptoms and improving joint proprioception.[31]

A 2018 meta-analysis showed that whole body vibration can improve bone mineral density in the lumbar spine and femoral neck of postmenopausal women younger than 65.[32] A 2019 publication evaluated the benefits of whole body vibration in pediatric oncology patients. Whole body vibration applied at frequencies ranging from 12 to 30 Hz was shown to improve balance and muscle strength of several muscle groups in the legs. This review concluded that whole body vibration is a therapeutic modality that can offset functional impairments in children with cancer. Whole body vibration should be used in conjunction with an exercise therapy program to promote an active lifestyle.[33]

A review in 2014 concluded that there is little and inconsistent evidence that acute or chronic whole body vibration could improve the performance of competitive or elite athletes.[34]

Cochrane reviews have concluded that there is insufficient evidence of effect of whole body vibration training on functional performance of people with neurodegenerative disease,[35] or in disease-related problems in people with fibromyalgia.[36]

Vibrating platform types

Vibrating platforms fall into different, distinct categories. The type of platform used is a moderator of the effect and result of the training or therapy performed (Marin PJ, Rhea MR, 2010[37]). Main categories of machine types are:

  1. High Energy Lineal, found mostly in commercial vibration training studios and gyms. The vibration direction is lineal/upward
  2. Premium Speed Pivotal, (teeter-totter movement) used for physiotherapy work at lower speeds and exercise workouts at “premium” speed, up to 30 Hz. Both commercial and home units are available.
  3. Medium Energy Lineal, the majority of lineal platforms produced. These are usually made of plastic; some have 3-D vibration which is low quality.
  4. Low Speed Pivotal units.

Other machine types are low Energy/Low amplitude lineal and Low energy/High amplitude lineal.

Concerning the z-movements, two main types of system can be distinguished (Marin PJ et al. 2010,[37] Rittweger 2010,[38] Rauch 2010[39]) :

  • Side alternating (pivotal) systems, operating like a see-saw and hence mimicking the human gait where one foot is always moving upwards and the other one downwards, and
  • Linear systems where the whole platform is mainly doing the same motion, respectively: both feet are moved upwards or downwards at the same time.

Systems with side alternation usually have a larger amplitude of oscillation and a frequency range of about 5 Hz to 40 Hz. Linear/upright systems have lower amplitudes but higher frequencies in the range of 20 Hz to 50 Hz. Despite the larger amplitudes of side-alternating systems, the vibration (acceleration) transmitted to the head is significantly smaller than in non side-alternating systems (Abercromby et al. 2007[40]) while at the same time muscle activation even at identical vibration parameters are increased in pivotal systems.[41]

Mechanical stimulation generates acceleration forces acting on the body. These forces cause the muscles to lengthen, and this signal is received by the muscle spindle, a small organ in the muscle. This spindle transmits the signal through the central nervous system to the muscles involved (Abercromby et al. 2007,[40] Burkhardt 2006[42]).

Power Plate is a brand of vibrating platform consisting of a vibrating base, which may vibrate up and down approximately 1 to 2 millimetres (39 to 79 thou) (1/16") 25 to 50 times per second.[43] The machine is large enough to accommodate a person in deep squat. Traditional exercises such as squats and push-ups can be done on the vibrating base.[44]

Galileo (in the US up until 2014 also available as Vibraflex) is a brand of vibration training platforms used as exercise equipment as well as for therapeutic use. It consists of a vibration platform which vibrates sinusoidal side alternating like a see-saw. Depending on the device size it oscillates with an amplitude of up to 6 mm (equivalent to a peak to peak distance of 12 mm) and a frequency of 5 Hz to 40 Hz (5 to 40 repetitions per second). Galileo is manufactured in Germany by the German company Novotec Medical GmbH. Since 2004 Galileo is also available as a medical device.

The base plate of Galileo vibration training devices is moving like a see-saw. This side alternating motion is supposed to mimic human gait in order to utilize nearly physiological motion patterns close to the side alternating human gait. The side alternation causes the hip to tilt which requires the contra lateral muscles of the back to be activated – while one leg is lifted the other drops.[45] Compared to vertically vibrating devices the side alternating motion results in very low acceleration acting on the centre of gravity of the upper body and the head.[46][40][47]

Belts

A vibrating belt machine (also Mueller belt machine, belt massager, or jiggler machine) is an exercise machine that uses a vibrating belt, to be used around the waist or buttocks.

See also

  • Hand-arm vibration
  • Noise, vibration, and harshness

References

  1. Mansfield, Neil J (2005). Human response to vibration. Boca Raton, FL: CRC Press. ISBN 978-0415282390. OCLC 55681295.
  2. Pyykkö I, Färkkilä M, Toivanen J, Korhonen O, Hyvärinen J (June 1976). "Transmission of vibration in the hand-arm system with special reference to changes in compression force and acceleration". Scandinavian Journal of Work, Environment & Health. 2 (2): 87–95. doi:10.5271/sjweh.2820. JSTOR 40964583. PMID 959789.
  3. ISO TC 108/SC 4/WG3 (23 August 2007). ISO 5349-1:2001, Mechanical vibration Measurement and evaluation of human exposure to hand-transmitted vibration Part 1: General requirements. Multiple. Distributed through American National Standards Institute.CS1 maint: uses authors parameter (link)
  4. Laskowski ER. "Is whole-body vibration a good way to lose weight and improve fitness?". Mayo Clinic. Retrieved 11 March 2018.
  5. Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ (August 2018). "Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis". Medicine. 97 (34): e11918. doi:10.1097/MD.0000000000011918. PMC 6112924. PMID 30142802.
  6. Guignard, J.C. (8 March 1971). "Human sensitivity to vibration". Journal of Sound and Vibration. 15 (1): 11–16. doi:10.1016/0022-460X(71)90354-3. ISSN 0022-460X.
  7. Lawther A, Griffin MJ (September 1987). "Prediction of the incidence of motion sickness from the magnitude, frequency, and duration of vertical oscillation". The Journal of the Acoustical Society of America. 82 (3): 957–66. doi:10.1121/1.395295. PMID 3655126.
  8. DeShaw J, Rahmatalla S (April 2016). "Predictive discomfort of supine humans in whole-body vibration and shock environments". Ergonomics. 59 (4): 568–81. doi:10.1080/00140139.2015.1083125. PMID 26280381.
  9. DeShaw J, Rahmatalla S (August 2014). "Predictive discomfort in single- and combined-axis whole-body vibration considering different seated postures". Human Factors. 56 (5): 850–63. doi:10.1177/0018720813516993. PMID 25141593.
  10. Magnusson ML, Pope MH, Wilder DG, Areskoug B (March 1996). "Are occupational drivers at an increased risk for developing musculoskeletal disorders?". Spine. 21 (6): 710–7. doi:10.1097/00007632-199603150-00010. PMID 8882693.
  11. Solecki L (2011). "[Low back pain among farmers exposed to whole body vibration: a literature review]". Medycyna Pracy. 62 (2): 187–202. PMID 21698878.
  12. Pope MH, Wilder DG, Magnusson ML (1999). "A review of studies on seated whole body vibration and low back pain". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 213 (6): 435–46. doi:10.1243/0954411991535040. PMID 10635692.
  13. Wilder DG, Pope MH (March 1996). "Epidemiological and aetiological aspects of low back pain in vibration environments - an update". Clinical Biomechanics. 11 (2): 61–73. doi:10.1016/0268-0033(95)00039-9. PMID 11415601.
  14. Griffin MJ (1990). Handbook of human vibration. London: Academic Press. ISBN 9780123030405. OCLC 21591126.
  15. "ISO 2631-1:1997 - Mechanical vibration and shock Evaluation of human exposure to whole-body vibration Part 1: General requirements". www.iso.org. Retrieved 24 May 2018.
  16. Mahshidfar B, Mofidi M, Yari AR, Mehrsorosh S (October 2013). "Long backboard versus vacuum mattress splint to immobilize whole spine in trauma victims in the field: a randomized clinical trial". Prehospital and Disaster Medicine. 28 (5): 462–5. doi:10.1017/S1049023X13008637. PMID 23746392.
  17. Rahmatalla S, DeShaw J, Stilley J, Denning G, Jennissen C (May 2018). "Comparing the Efficacy of Methods for Immobilizing the Thoracic-Lumbar Spine". Air Medical Journal. 37 (3): 178–185. doi:10.1016/j.amj.2018.02.002. PMID 29735231.
  18. Sundstrøm T, Asbjørnsen H, Habiba S, Sunde GA, Wester K (March 2014). "Prehospital use of cervical collars in trauma patients: a critical review". Journal of Neurotrauma. 31 (6): 531–40. doi:10.1089/neu.2013.3094. PMC 3949434. PMID 23962031.
  19. "New methodologies for evaluating human biodynamic response and discomfort during seated whole-body vibration considering multiple postures - ProQuest". search.proquest.com. Retrieved 31 May 2018.
  20. Hinz B, Menzel G, Blüthner R, Seidel H (2010). "Seat-to-head transfer function of seated men--determination with single and three axis excitations at different magnitudes". Industrial Health. 48 (5): 565–83. doi:10.2486/indhealth.MSWBVI-03. PMID 20953074.
  21. "ISO 8041-1:2017 - Human response to vibration Measuring instrumentation Part 1: General purpose vibration meters". www.iso.org.
  22. ISO/TC 108/SC4 (23 August 2007). ISO 5349-2:2001, Mechanical vibration - Measurement and evaluation of human exposure to hand-transmitted vibration - Part 2: Practical guidance for measurement at the workplace. Multiple. Distributed through American National Standards Institute.
  23. Biermann, W. "Influence of cycloid vibration massage on trunk flexion". American Journal of Physical Medicine. 1960 (39): 219–224.
  24. "Good Vibrations".
  25. Rittweger J., Felsenberg D.: Resistive vibration exercise prevents bone loss during 8 weeks of strict bed rest in healthy male subjects: results from the Berlin Bed Rest (BBR) study, 26th Annual Meeting of the American Society for Bone and Mineral Research; October 2004; Seattle
  26. Kramer A, Gollhofer A, Ritzmann R (August 2013). "Acute exposure to microgravity does not influence the H-reflex with or without whole body vibration and does not cause vibration-specific changes in muscular activity". Journal of Electromyography and Kinesiology. 23 (4): 872–8. doi:10.1016/j.jelekin.2013.02.010. PMID 23541330.
  27. Ritzmann R, Krause A, Freyler K, Gollhofer A (2016). "Gravity and Neuronal Adaptation - Neurophysiology of Reflexes from Hypo- to Hypergravity Conditions". Microgravity Sci. Technol.
  28. Bosco C, Colli R, Introini E, Cardinale M, Tsarpela O, Madella A, Tihanyi J, Viru A (March 1999). "Adaptive responses of human skeletal muscle to vibration exposure". Clinical Physiology. 19 (2): 183–7. doi:10.1046/j.1365-2281.1999.00155.x. PMID 10200901.
  29. Bosco C, Cardinale M, Tsarpela O, Colli R, Tihanyi J, Ducillard C, Viru A (1998). "The Influence of Whole Body Vibration on Jumping Performance" (PDF). Biology of Sport. 15 (3): 157–164.
  30. Bosco C, Cardinale M, Tsarpela O (March 1999). "Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles". European Journal of Applied Physiology and Occupational Physiology. 79 (4): 306–11. doi:10.1007/s004210050512. PMID 10090628.
  31. Zheng YL, Wang XF, Chen BL, Gu W, Wang X, Xu B, Zhang J, Wu Y, Chen CC, Liu XC, Wang XQ (January 2019). "Effect of 12-Week Whole-Body Vibration Exercise on Lumbopelvic Proprioception and Pain Control in Young Adults with Nonspecific Low Back Pain". Medical Science Monitor. 25: 443–452. doi:10.12659/MSM.912047. PMC 6342063. PMID 30644383.
  32. Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ (August 2018). "Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis". Medicine. 97 (34): e11918. doi:10.1097/MD.0000000000011918. PMC 6112924. PMID 30142802.
  33. Rustler V, Däggelmann J, Streckmann F, Bloch W, Baumann FT (February 2019). "Whole-body vibration in children with disabilities demonstrates therapeutic potentials for pediatric cancer populations: a systematic review". Supportive Care in Cancer. 27 (2): 395–406. doi:10.1007/s00520-018-4506-5. PMID 30368670.
  34. Tibor Hortobágyi, Urs Granacher, Miguel Fernandez-del-Olmo (2014). "Whole body vibration and athletic performance: A scoping review". European Journal of Human Movement. 33.CS1 maint: multiple names: authors list (link)
  35. Sitjà Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A, Santoyo Medina C, Roqué i Figuls M, Romero-Rodríguez D, Bonfill Cosp (15 February 2012). "Whole-body vibration platform training in patients with neurodegenerative diseases". Cochrane collaboration.CS1 maint: multiple names: authors list (link)
  36. Bidonde J, Busch AJ, van der Spuy I, Tupper S, Kim SY, Boden C (26 September 2017). "Whole body vibration training for adults with fibromyalgia". Cochrane collaboration.CS1 maint: multiple names: authors list (link)
  37. Marín PJ, Rhea MR (March 2010). "Effects of vibration training on muscle power: a meta-analysis". Journal of Strength and Conditioning Research. 24 (3): 871–8. doi:10.1519/JSC.0b013e3181c7c6f0. PMID 20145554.
  38. Rittweger J (March 2010). "Vibration as an exercise modality: how it may work, and what its potential might be" (PDF). European Journal of Applied Physiology. 108 (5): 877–904. doi:10.1007/s00421-009-1303-3. PMID 20012646.
  39. Rauch F, Sievanen H, Boonen S, Cardinale M, Degens H, Felsenberg D, Roth J, Schoenau E, Verschueren S, Rittweger J (September 2010). "Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions". Journal of Musculoskeletal & Neuronal Interactions. 10 (3): 193–8. PMID 20811143.
  40. Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH (October 2007). "Vibration exposure and biodynamic responses during whole-body vibration training". Medicine and Science in Sports and Exercise. 39 (10): 1794–800. doi:10.1249/mss.0b013e3181238a0f. PMID 17909407.
  41. Ritzmann R, Gollhofer A, Kramer A: The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration., European Journal of Applied Physiology, (113):1-11, 2013; PMID 22538279
  42. Burkhardt A.: Vibrationstraining in der Physiotherapie - Wippen mit Wirkung, Physiopraxis 9/06, s.22.25, 2006
  43. Bautmans I, Van Hees E, Lemper JC, Mets T (December 2005). "The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial [ISRCTN62535013]". BMC Geriatrics. 5: 17. doi:10.1186/1471-2318-5-17. PMC 1368976. PMID 16372905.
  44. Heyward VH (2006). "power+plate"+vibration Advanced fitness assessment and exercise prescription. Human Kinetics. p. 159. ISBN 978-0-7360-5732-5.
  45. Rittweger J, Just K, Kautzsch K, Reeg P, Felsenberg D (September 2002). "Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial". Spine. 27 (17): 1829–34. CiteSeerX 10.1.1.484.6691. doi:10.1097/00007632-200209010-00003. PMID 12221343.
  46. Pel JJ, Bagheri J, van Dam LM, van den Berg-Emons HJ, Horemans HL, Stam HJ, van der Steen J (October 2009). "Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs". Medical Engineering & Physics. 31 (8): 937–44. doi:10.1016/j.medengphy.2009.05.005. PMID 19523867.
  47. Spitzenpfeil P, Stritzker M, Kirchbichler A, Tusker F, Hartmann U, Hartard H (2006). "Mechanical impacts to the human body by different vibration training devices". Journal of Biomechanics. 39 (Suppl 1): 196. doi:10.1016/S0021-9290(06)83707-3.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.