কোলাজ অনুমান

লুথার কোলাজ ১৯৩৭ সালে কোলাজ অনুমান টি প্রস্তাব করেন। এতে প্রশ্ন করা হয়েছে, একটা নির্দিষ্ট অনুক্রম কি সবসময় একই ভাবে শেষ হবে কিনা, অনুক্রমটির প্রথম সংখ্যাটি যাই হোক না কেন।

পল এরডশ এই অনুমানটি সম্পর্কে বলেছেন, এ ধরনের সমস্যার জন্য গণিত এখনো প্রস্তুত হয় নি! তিনি ৫০০ ডলার ঘোষণা করেছেন এই সমস্যাটির জন্য।

সমস্যার বর্ণনা

যেকোন ধনাত্মক পূর্ণ সংখ্যার জন্য নিচের অপারেশন দুইটি বিবেচনা করা যাক,

  • সংখ্যাটি যদি জোড় হয়, তবে তাকে 2 দিয়ে ভাগ কর।
  • সংখ্যাটি যদি বিজোড় হয়, তবে তাকে 3 দিয়ে গুণ করে 1 যোগ কর।

গাণিতিক ভাষায় বলতে গেলে,

একটা ফাংশন f এভাবে সংজ্ঞায়িত করা হয়েছে,

এখন এই অপারেশনটি পুনরাবৃত্তি করে একটা অনুক্রম তৈরি করা যাক। অনুক্রমটির প্রথম সংখ্যা যেকোন ধনাত্মক পূর্ণ সংখ্যা n

কোলাজ অনুমান যা বলছে, তা হল এই কার্যপ্রণালী অবশেষে 1 এ গিয়ে পৌঁছুবে, শুরুতে যে সংখ্যাই বিবেচনা করা হোক না কেন

গণিতের ভাষায় বলতে গেলে,

অনুমানটি মিথ্যা হলে, এমন কোন সূচনা সংখ্যা পাওয়া যাবে, যার জন্য এমন একটা চক্রাকার অনুক্রম পাওয়া যাবে যেখানে 1 অনুপস্থিত, অথবা অনুক্রমটি সীমাহীন ভাবে বাড়তে থাকেবে। কিন্তু এ জাতীয় কোন অনুক্রমের সন্ধান পাওয়া যায়নি।

End

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.