On This Page
ToxFAQs™ for Cyanide
(Cianuro)
July 2006
CAS#: 74-90-8; 143-33-9; 151-50-8; 592-01-8; 544-92-3; 506-61-6; 460-19-5; 506-77-4
This fact sheet answers the most frequently asked health questions about cyanide. For more information, you may call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.
Highlights
Exposure to high levels of cyanide harms the brain and heart, and may cause coma and death. Exposure to lower levels may result in breathing difficulties, heart pains, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Cyanide has been found in at least 471 of the 1,662 National Priorities List sites identified by the Environmental Protection Agency (EPA).
What is cyanide?
Cyanide is usually found joined with other chemicals to form compounds. Examples of simple cyanide compounds are hydrogen cyanide, sodium cyanide and potassium cyanide. Certain bacteria, fungi, and algae can produce cyanide, and cyanide is found in a number of foods and plants. In certain plant foods, including almonds, millet sprouts, lima beans, soy, spinach, bamboo shoots, and cassava roots (which are a major source of food in tropical countries), cyanides occur naturally as part of sugars or other naturally-occurring compounds. However, the edible parts of plants that are eaten in the United States, including tapioca which is made from cassava roots, contain relatively low amounts of cyanide.
Hydrogen cyanide is a colorless gas with a faint, bitter, almondlike odor. Sodium cyanide and potassium cyanide are both white solids with a bitter, almond-like odor in damp air. Cyanide and hydrogen cyanide are used in electroplating, metallurgy, organic chemicals production, photographic developing, manufacture of plastics, fumigation of ships, and some mining processes.
What happens to cyanide when it enters the environment?
- Cyanide enters air, water, and soil from both natural processes and industrial activities.
- In air, cyanide is mainly found as gaseous hydrogen cyanide; a small amount is present as fine dust particles.
- The half-life (the time needed for half of the material to be removed) of hydrogen cyanide in the atmosphere is about 1– 3 years.
- Most cyanide in surface water will form hydrogen cyanide and evaporate.
- Cyanide in water does not build up in the bodies of fish.
- Cyanides are fairly mobile in soil. Once in soil, cyanide can be removed through several processes. Some cyanide compounds in soil can form hydrogen cyanide and evaporate, whereas some cyanide compounds will be transformed into other chemical forms by microorganisms in soil. At the high concentrations, cyanide becomes toxic to soil microorganisms. Because these microorganisms can no longer change cyanide to other chemical forms, cyanide is able to passes through soil into underground water.
How might I be exposed to cyanide?
- Breathing air, drinking water, touching soil, or eating foods that contain cyanide.
- Smoking cigarettes and breathing smoke-filled air during fires are major sources of cyanide exposure.
- Breathing air near a hazardous waste site containing cyanide.
- Eating foods naturally containing cyanide compounds, such as tapioca (made from cassava roots), lima beans, and almonds. However, the portions of these plants that are eaten in the United States contain relatively low amounts of cyanide.
How can cyanide affect my health?
You are not likely to be exposed to large enough amounts of cyanide in the environment to cause adverse health effects. The severity of the harmful effects following cyanide exposure depends in part on the form of cyanide, such as hydrogen cyanide gas or cyanide salts. Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma and death. Workers who inhaled low levels of hydrogen cyanide over a period of years had breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland.
Some of the first indications of cyanide poisoning are rapid, deep breathing and shortness of breath, followed by convulsions (seizures) and loss of consciousness. These symptoms can occur rapidly, depending on the amount eaten. The health effects of large amounts of cyanide are similar, whether you eat, drink, or breathe it; cyanide uptake into the body through the skin is slower than these other means of exposure. Skin contact with hydrogen cyanide or cyanide salts can irritate and produce sores.
How likely is cyanide to cause cancer?
There are no reports that cyanide can cause cancer in people or animals. EPA has determined that cyanide is not classifiable as to its human carcinogenicity.
How can cyanide affect children?
Effects reported in exposed children are like those seen in exposed adults. Children who ate large quantities of apricot pits, which naturally contain cyanide as part of complex sugars, had rapid breathing, low blood pressure, headaches, and coma, and some died. Cyanide has not been reported to directly cause birth defects in people. However, among people in the tropics who eat cassava root, children have been born with thyroid disease because of the mothers' exposure to cyanide and thiocyanate during pregnancy. Birth defects occurred in rats that ate cassava root diets, and harmful effects on the reproductive system occurred in rats and mice that drank water containing sodium cyanide.
How can families reduce the risk of exposure to cyanide?
Families can reduce their exposure to cyanide by not breathing in tobacco smoke, which is the most common source of cyanide exposure for the general population. In the event of a building fire, families should evacuate the building immediately, because smoke from burning plastics contains cyanide (and carbon monoxide). Breathing this smoke can lead to unconsciousness or death. Cyanide in smoke can arise from the combustion of certain plastics (e.g., polyacrylamines, polyacrylics, polyurethane, etc.).
Compounds that release cyanide are naturally present in plants. The amounts are usually low in the edible portion but are higher in cassava. Pits and seeds of common fruits, such as apricots, apples, and peaches, may have substantial amounts of cyanidereleasing chemicals, so people should avoid eating these pits and seeds to prevent accidental cyanide poisoning.
Is there a medical test to show whether I've been exposed to cyanide?
There are medical tests to measure blood and urine levels of cyanide; however, small amounts of cyanide are always detectable in blood and urine. Tissue levels of cyanide can be measured if cyanide poisoning is suspected, but cyanide is rapidly cleared from the body, so the tests must be done soon after the exposure. An almond-like odor in the breath may alert a physician that a person was exposed to cyanide.
Has the federal government made recommendations to protect human health?
EPA regulates the levels of cyanide that are allowable in drinking water. The highest level of cyanide allowed in drinking water is 0.2 parts cyanide per 1 million parts of water (0.2 ppm). The Occupational Safety and Health Administration (OSHA) has set a limit for hydrogen cyanide and most cyanide salts of 10 parts cyanide per 1 million parts of air (10 ppm) in the workplace.
References
Agency for Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological Profile for Cyanide. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Where can I get more information?
If you have questions or concerns, please contact your community or state health or environmental quality department or:
For more information, contact:
Agency for Toxic Substances and Disease Registry
Division of Toxicology and Human Health Sciences
1600 Clifton Road NE, Mailstop F-57
Atlanta, GA 30329-4027
Phone: 1-800-CDC-INFO · 888-232-6348 (TTY)
Email: Contact CDC-INFO
ATSDR can also tell you the location of occupational and environmental health clinics. These clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to hazardous substances.
Information line and technical assistance:
Phone: 888-422-8737
To order toxicological profiles, contact:
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Phone: 800-553-6847 or 703-605-6000
Disclaimer
Some PDF files may be electronic conversions from paper copy or other electronic ASCII text files. This conversion may have resulted in character translation or format errors. Users are referred to the original paper copy of the toxicological profile for the official text, figures, and tables. Original paper copies can be obtained via the directions on the toxicological profile home page, which also contains other important information about the profiles.
The information contained here was correct at the time of publication. Please check with the appropriate agency for any changes to the regulations or guidelines cited.
- Page last reviewed: February 12, 2013
- Page last updated: October 24, 2011
- Content source: Agency for Toxic Substances and Disease Registry