വിസ്തീർണ്ണം

ജ്യാമിതീയ രൂപങ്ങളുടെയോ, ദ്വിമാനമായ പ്രതലങ്ങളുടേയോ ഉപരിതലത്തിന്റെ വലിപ്പം നിർവചിക്കാനുള്ള ഒരു ഉപാധിയാണ് വിസ്തീർണ്ണം അഥവാ പരപ്പളവ്. ചതുരശ്രം ആണ് വിസ്തീർണ്ണത്തിന്റെ അളവു കോൽ. ചതുരശ്ര കിലോമീറ്റർ, ചതുരശ്ര അടി, ചതുരശ്ര സെന്റീമീറ്റർ തുടങ്ങിയവ വിസ്തീർണ്ണത്തെ പ്രതിനിധാനം ചെയ്യുന്നു. ഇതു കൂടാതെ സെന്റ്, ഏക്കർ, ഹെക്റ്റർ തുടങ്ങിയ രീതികളും നിലവിലുണ്ട്.

യൂണിറ്റുകൾ

ചതുരശ്ര മീറ്റർ1 മീറ്റർ നീളവും വീതിയുമുള്ള ഒരു സമചതുരത്തിന്റെ ഉപരിതല വലിപ്പം
ഹെക്ടേർ10,000 ച.മീ
ചതുരശ്ര അടി0.09290304 ച.മീ.
ചതുരശ്ര യാർഡ്9 ചതുരശ്ര അടി
ഏക്കർ43,560 ചതുരശ്ര അടികൾ = 4046.8564224 ച.മീ.
ചതുരശ്ര മൈൽ640 ഏക്കർ

വിസ്തീർണ്ണ സൂത്രവാക്യങ്ങൾ

ബഹുഭുജങ്ങളുടെ വിസ്തീർണ്ണം

ചതുരത്തിന്റെ വിസ്തീർണ്ണം

ചതുരത്തിന്റെ വിസ്തീർണ്ണം  lw ആകുന്നു.

അടിസ്ഥാന വിസ്തീർണ്ണമായി പരിഗണിക്കുന്നത് ചതുരത്തിന്റെ വിസ്തീർണ്ണമാണ്. l നീളവും w വീതിയുമുള്ള ഒരു ചതുരത്തിന്റെ വിസ്തീർണ്ണം കാണാൻ ഈ സൂത്രവാക്യം ഉപയോഗിക്കുന്നു.[1] (A വിസ്തീർണ്ണത്തെ സൂചിപ്പിക്കുന്നു.)

ചതുരത്തിന്റെ ഉപവിഭാഗമായ സമചതുരത്തിന്റെ വിസ്തീർണ്ണം കാണാൻ ഈ സൂത്രവാക്യം ഉപയോഗിക്കാറില്ല. കാരണം സമചതുരത്തിന് നീളം, വീതി എന്നിവ പ്രത്യേകമായി പറയാനാവില്ല. സമചതുരത്തിന്റെ ഒരു വശം s ആണെങ്കിൽ വിസ്തീർണ്ണം[1] :

ചതുരത്തിന്റെ വിസ്തീർണ്ണം കാണാനുള്ള സമവാക്യം രൂപപ്പെടുത്തിയെടുത്തത് വിസ്തീർണ്ണത്തിന്റെ അടിസ്ഥാന നിർവചനത്തിൽ നിന്നാണ്. ഈ നിർവചനത്തെ ഒരു സ്വയം പ്രഖ്യാപിത സിദ്ധാന്തമായി കരുതാവുന്നതാണ്. അങ്കഗണിതത്തിനു മുമ്പേ രൂപം കൊണ്ടത് ജ്യാമിതിയാണെങ്കിൽ ഗുണനം രൂപം കൊണ്ടത് വിസ്തീർണ്ണത്തിൽ നിന്നുമായിരിക്കും.

ഖണ്ഡന സൂത്രവാക്യങ്ങൾ

സമവിസ്തീർണ്ണ രൂപങ്ങൾ.

മറ്റു ബഹുഭുജങ്ങളുടെ വിസ്തീർണ്ണം കാണാൻ ഖണ്ഡന രീതി ഉപയോഗിക്കാം. ജ്യാമിതീയ രൂപങ്ങളെ വിവിധ ഭാഗങ്ങളായി മുറിച്ച്, ആ ഭാഗങ്ങളുടെ വിസ്തീർണ്ണങ്ങൾ തമ്മിൽ കൂട്ടി മൂലരൂപത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുന്ന രീതിയാണിത്.

ഇതൊനൊരു ഉദാഹരണമാണ് സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കാണാനുള്ള സൂത്രവാക്യം.

ഉദാഹരണം 1

ചിത്രത്തിൽ കാണുന്നത് പോലെ സാമാന്തരികത്തിനെ ഒരു ലംബകവും മട്ടത്രികോണവുമായി മുറിക്കാം. ഇതിനെ കൂട്ടിയോജിപ്പിച്ച് ചതുരം നിർമ്മിക്കാം. ഇത്തരത്തിൽ സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കണക്കാക്കാം. സാമാന്തരികത്തിന്റെ ഉയരം hഉം പാദവശത്തിന്റേയോ മുകൾവശത്തിന്റേയോ നീളം bയും ആണെങ്കിൽ വിസ്തീർണ്ണം:

ഉദാഹരണം 2

ഒരു ചതുരത്തിനെ വികർണ്ണത്തിലൂടെ രണ്ടായി ഖണ്ഡിച്ചാൽ രണ്ടു മട്ടത്രികോണം ലഭിക്കും. അതായത് പ്രസ്തുത ചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ പകുതിയായിരിക്കും മട്ടത്രികോണത്തിന്റെ വിസ്തീർണ്ണം. മട്ടത്രികോണത്തിന്റെ ലംബഉയരം hഉം പാദനീളം bയും ആണെങ്കിൽ വിസ്തീർണ്ണം:

ആ രണ്ടു ത്രികോണങ്ങളുടെ വിസ്തീർണ്ണങ്ങളുടെ തുക വീണ്ടും

എന്നു തന്നെ വരുന്നു.

അവലംബം

  1. "Area Formulas". Math.com. ശേഖരിച്ചത്: 2 July 2012.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.