ഊഷ്മാവ്

ഭൗതികശാസ്ത്രത്തിൽ പദാർത്ഥങ്ങളുടെ ഒരു ഭൗതിക ഗുണമായി കണക്കാക്കുകന്ന ഒന്നാണ്‌ ഊഷ്മാവ് അഥവാ താപനില (Temperature), ചൂടും തണുപ്പും സൂചിപ്പിക്കുവാൻ ഇതുപയോഗിക്കുന്നു. താപഗതികത്തിലെ ഒരു അടിസ്ഥാന ഘടകമാണ്‌ ഇത്. ബഹുതല വീക്ഷണത്തിൽ ഊഷമാവ് എന്നാൽ താപസമ്പർക്കത്തിലിരിക്കുന്ന രണ്ട് വസ്തുക്കളിൽ താപത്തിന്റെ ഒഴുക്കിനെ നിർണ്ണയിക്കുന്ന ഒരു ഭൗതിക ഗുണമാണ്‌. അവയ്ക്കിടയിൽ താപക്കൈമാറ്റം നടക്കുന്നില്ലെങ്കിൽ രണ്ട് വസ്തുക്കൾക്കും ഒരേ താപനിലയാണ്‌; അങ്ങനെയല്ലെങ്കിൽ കൂടുതൽ താപനിലയുള്ള വസ്തുവിൽ നിന്നും താപനില കുറഞ്ഞ വസ്തുവിലേക്ക് താപം ഒഴുകുന്നു. ഇതാണ്‌ പൂജ്യാമത്തെ (zeroth Law) താപഗതികനിയമത്തിന്റെ ഉള്ളടക്കം. സൂക്ഷമതലത്തിൽ ആ വ്യൂഹത്തിലെ കണികൾക്ക് വ്യത്യസ്തതലങ്ങളിൽ സ്വതന്ത്ര്യത്തിനുള്ള ശാരാശരി ഊർജ്ജമാണ് ഇത്‌, അതിനാൽ തന്നെ താപനില എന്നത് ഒരു നിർണ്ണീതമായ ഗുണമാണ്‌. ഒരു വ്യൂഹത്തിൽ കുറച്ചു കണികകളെങ്കിലും ഉണ്ടായിരിക്കണം താപനില എന്നതിന്‌ ഒരു മാനം ഉണ്ടാവാൻ. ഖരപദാർത്ഥങ്ങളിൽ തൽസ്ഥാനങ്ങളിൽ ആറ്റങ്ങൾക്കുള്ള കമ്പനമായി ഈ ഊർജ്ജം കാണപ്പെടുന്നു. ഏകാറ്റോമിക ആദർശവാതകങ്ങളിൽ കണികളുടെ ചലനമായി ഈ ഊർജ്ജം കാണപ്പെടുന്നു; താന്മാത്രാവാതകങ്ങളിൽ കമ്പനമായും ഭ്രമണമായും ഇത് കണികകൾക്ക് താപഗതികസ്വാതന്ത്ര്യം നൽകുന്നു.

The temperature of an ideal monatomic gas is a measure related to the average kinetic energy of its atoms as they move. In this animation, the size of helium atoms relative to their spacing is shown to scale under 1950 atmospheres of pressure. These room-temperature atoms have a certain, average speed (slowed down here two trillion fold).

പ്രകൃതിയിലെ പ്രാധാന്യം

A map of monthly mean temperatures
0 ° സെൽഷ്യസിൽ ജലം ഖരമാകുന്നു. ചിത്രത്തിലുള്ളത് -17 ° സെൽഷ്യസിലുള്ള കാഴ്ച്ചയാണ്‌.

ഭൗതികശാസ്ത്രം, ഭൂഗർഭശാസ്ത്രം, രസതന്ത്രം, ജീവശാസ്ത്രം തുടങ്ങിയ ശാസ്ത്രത്തിന്റെ എല്ലാ മേഖലകളിലും ഊഷമാവിന് വളരെയധികം പ്രാധാന്യമാണുള്ളത്.

ഖരം, ദ്രാവകം, വാതകം, പ്ലാസ്മ തുടങ്ങിയ പദാർത്ഥങ്ങളുടെ അവസ്ഥകളുൾപ്പെടെ, സാന്ദ്രത, പ്രതലബലം, വിദ്യുത്ചാലകത തുടങ്ങിയവയെല്ലാം താപനിലയെ ആശ്രയിച്ചിരിക്കുന്നു. കൂടാതെ രാസപ്രവർത്തനങ്ങളുടെ നിരക്കിനേയും വേഗതയേയും തീരുമാനിക്കുന്നതിൽ താപനില ഒരു പ്രധാന പങ്കുവഹിക്കുന്നു. ഇതേകാരണത്താലാണ്‌ മനുഷ്യന്റെ ശരീര താപനില 37 °C ൽ നിലനിർത്തുവാനാവശ്യമായ പ്രവർത്തനങ്ങൾ മനുഷ്യശരീരത്തിൽ ഉൾക്കൊള്ളിക്കപ്പെട്ടിരിക്കുന്നത്, താപനില വർദ്ധിക്കുന്നത് ഗുരുതരമായ പ്രശ്നങ്ങൾക്ക് കാരണമാകുന്ന പ്രവർത്തനങ്ങൾക്ക് ഹേതുവായേക്കാം. വസ്തുക്കളുടെ ഉപരിതലത്തിൽ നിന്നും പ്രവഹിക്കുന്ന താപവികിരണത്തിനേയും താപനില സ്വാധീനിക്കുന്നു. ഇതേ തത്ത്വമാണ്‌ ഇൻകാൻഡെസെന്റ് ലാമ്പിൽ നടക്കുന്നത്, ദൃശ്യപ്രാകാശം വികിരണം ചെയ്യപ്പെടുവാനാവശ്യമായ നിലയിലേക്ക് ടങ്ങ്സ്റ്റൺ ഫിലമെന്റിനെ താപനില ഉയർത്തുകയാണ് ഇവിടെ ചെയ്യുന്നത്.

ഊഷമാവിനനുബന്ധമായ ശബ്ദത്തിന്റെ വായുവിലുള്ള വേഗത c, വായുവിന്റെ സാന്ദ്രത ρ അക്കോസ്റ്റിക്ക് ഇം‌പെഡൻസ് (acoustic impedance) Z ഊഷ്മാവിനനുസരിച്ച്.

സമുദ്രനിരപ്പിലെ വായുവിലെ ശബ്ദത്തിന്റെ വേഗത, വായുസാന്ദ്രത, അക്കോസ്റ്റിക്ക് ഇം‌പെഡൻസ് തുടങ്ങിയവയിലെ ഊഷ്മാവിന്റെ സ്വാധീനം
T in °Cc in m/sρ in kg/m³Z in N·s/m³
−10325.41.341436.5
−5328.51.316432.4
0331.51.293428.3
5334.51.269424.5
10337.51.247420.7
15340.51.225417.0
20343.41.204413.5
25346.31.184410.0
30349.21.164406.6

അവലംബം

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.