Medazepam

Medazepam is a drug that is a benzodiazepine derivative. It possesses anxiolytic, anticonvulsant, sedative, and skeletal muscle relaxant properties. It is known by the following brand names: Azepamid, Nobrium, Tranquirax (mixed with bevonium), Rudotel, Raporan, Ansilan and Mezapam.[1] Medazepam is a long-acting benzodiazepine drug. The half-life of medazepam is 36–200 hours.[2]

Medazepam
Clinical data
Trade namesRudotel
AHFS/Drugs.comInternational Drug Names
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • CA: Schedule IV
  • DE: Prescription only (Anlage III for higher doses)
  • US: Schedule IV
Pharmacokinetic data
Bioavailability50–75% (Сmax = 1–2 hours)
Protein binding>99%
MetabolismHepatic
Elimination half-life2 hours, 36–150 hours (terminal)
ExcretionRenal (63–85%), Biliary 15–37%
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.018.895
Chemical and physical data
FormulaC16H15ClN2
Molar mass270.8 g/mol g·mol−1
3D model (JSmol)
 NY (what is this?)  (verify)

Pharmacology

Medazepam acts as a prodrug to diazepam, as well as nordazepam, temazepam and oxazepam. Benzodiazepine drugs including medazepam increase the inhibitory processes in the cerebral cortex by allosteric modulation of the GABA receptor.[3] Benzodiazepines may also act via micromolar benzodiazepine-binding sites as Ca2+ channel blockers and significantly inhibited depolarization-sensitive calcium uptake in experiments with cell components from rat brains. This has been conjectured as a mechanism for high dose effects against seizures in a study.[4] It has major active benzodiazepine metabolites, which gives it a more prolonged therapeutic effects after administration.[5]

See also

References

  1. Encyclopedia of Drugs: Benzodiazepines
  2. Professor heather Ashton (April 2007). "BENZODIAZEPINE EQUIVALENCY TABLE". Retrieved September 23, 2007.
  3. Zakusov VV; Ostrovskaya RU; Kozhechkin SN; Markovich VV; Molodavkin GM; Voronina TA. (October 1977). "Further evidence for GABA-ergic mechanisms in the action of benzodiazepines". Archives Internationales de Pharmacodynamie et de Thérapie. 229 (2): 313–26. PMID 23084.
  4. Taft WC; DeLorenzo RJ (May 1984). "Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations" (PDF). Proc Natl Acad Sci USA (PDF). 81 (10): 3118–22. doi:10.1073/pnas.81.10.3118. PMC 345232. PMID 6328498.
  5. Jochemsen R, Breimer DD (1984). "Pharmacokinetics of benzodiazepines: metabolic pathways and plasma level profiles". Curr Med Res Opin. 8 Suppl 4: 60–79. doi:10.1185/03007998409109545. PMID 6144464.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.