Lynestrenol phenylpropionate

Lynestrenol phenylpropionate (LPP), also known as ethynylestrenol phenylpropionate, is a progestin and a progestogen ester which was developed for potential use as a progestogen-only injectable contraceptive by Organon but was never marketed.[1][2][3][4][5][6][7][8] It was assessed at doses of 25 to 75 mg in an oil solution once a month by intramuscular injection.[1][4][4] LPP was associated with high contraceptive failure at the low dose and with poor cycle control.[3] The medication was found to produce estrogenic effects in the endometrium in women due to transformation into estrogenic metabolites.[4]

Lynestrenol phenylpropionate
Clinical data
Other namesLPP; 17α-Ethynylestr-4-en-17β-ol 17β-(3-phenylpropionate); 19-Nor-17α-pregn-4-en-20-yn-17-ol benzenepropanoate
Routes of
administration
Intramuscular injection
Drug classProgestogen; Progestin; Progestogen ester
Identifiers
CAS Number
Chemical and physical data
FormulaC29H36O2
Molar mass416.602 g/mol g·mol−1
3D model (JSmol)

A single intramuscular injection of 50 to 100 mg LPP in oil solution has been found to have a duration of action of 14 to 30 days in terms of clinical biological effect in the uterus and on body temperature in women.[9]

LPP has a long biological half-life in rats when given as an intramuscular depot injection; its half-life was similar to that of nandrolone laurate (nandrolone dodecanoate) and was about 2-fold longer than that of nandrolone decanoate, 10-fold longer than that of lynestrenol and nandrolone phenylpropionate, 50-fold longer than that of progesterone, and 430-fold longer than that of nandrolone.[5][6]

Parenteral potencies and durations of progestogens
ProgestogenFormMajor brand namesClassTFD
(14 days)
POIC-D
(2–3 months)
CIC-D
(month)
Duration
Algestone acetophenideOil solutionPerlutal, Topasel, YectamesPregnane?75–150 mg100 mg ≈ 14–32 days
Cyproterone acetateOil solutionAndrocur DepotPregnane?300 mg ≈ 20 days
DydrogesteroneaAqueous suspensionRetropregnane?100 mg ≈ 16–38 days
Gestonorone caproateOil solutionDepostat, PrimostatNorpregnane50 mg25–50 mg ≈ 8–13 days
Hydroxyprogesterone acetateaAqueous suspensionPregnane350 mg150–350 mg ≈ 9–16 days
Hydroxyprogesterone caproateOil solutionDelalutin, Proluton, MakenaPregnane250–500 mgb250–500 mg65–500 mg ≈ 5–21 days
Levonorgestrel butanoateaAqueous suspensionGonane?5–50 mg ≈ 3–6 months
Lynestrenol phenylpropionateaOil solutionEstrane?50–100 mg ≈ 14–30 days
Medroxyprogesterone acetateAqueous suspensionDepo-ProveraPregnane50–100 mg150 mg25 mg50–150 mg ≈ 14–50+ days
Megestrol acetateAqueous suspensionMego-EPregnane?25 mg25 mg ≈ >14 daysc
Norethisterone enanthateOil solutionNoristerat, MesigynaEstrane100–200 mg200 mg50 mg50–200 mg ≈ 11–52 days
Oxogestone phenylpropionateaOil solutionNorpregnane?100 mg ≈ 19–20 days
ProgesteroneOil solutionProgestaject, Gestone, StronePregnane200 mgb25–350 mg ≈ 2–6 days
Aqueous suspensionAgolutin DepotPregnane50–200 mg50–300 mg ≈ 7–14 days
Note: All by intramuscular or subcutaneous injection. All are synthetic except for P4, which is bioidentical. P4 production during the luteal phase is ~25 (15–50) mg/day. The OID of OHPC is 250 to 500 mg/month. Footnotes: a = Never marketed by this route. b = In divided doses (2 × 125 or 250 mg for OHPC, 10 × 20 mg for P4). c = Half-life is ~14 days. Sources: Main: See template.

See also

References

  1. Elsayed Saad Eldin Hafez (1980). Human reproduction: conception and contraception. Harper and Row. p. 607,614. ISBN 978-0-06-141066-6.
  2. Goldsmith, A., & Toppozada, M. (1983). Long-acting contraception. p. 95 https://www.popline.org/node/423289
  3. Toppozada M (June 1977). "The clinical use of monthly injectable contraceptive preparations". Obstet Gynecol Surv. 32 (6): 335–47. doi:10.1097/00006254-197706000-00001. PMID 865726.
  4. Badawy S, Makhlouf A (1975). "The contraceptive action of lynestrenol phenylpropionate". Adv Plan Parent. 10 (3): 149–53. PMID 789155.
  5. van der Vies J (1985). "Implications of basic pharmacology in the therapy with esters of nandrolone". Acta Endocrinol Suppl (Copenh). 271: 38–44. doi:10.1530/acta.0.109S0038. PMID 3865480.
  6. Van der Vies, J (1969). "Mechanism of action of long-acting hormone preparations". Organorama. 6 (5): 4–8. ISSN 0369-7762. Studies were made with nandrolone phenpropionate (Durabolin), nandrolone decanoate, and 16α-ethylprogesterone in peanut oil injected into the gastrocnemius muscle of rats. The free steroid was much more rapidly resorbed than the esters, explaining the action-prolonging effects obtained with the latter. Generally, resorption rates correlated well with duration of action. Resorption from the muscle was followed by transport to the receptor site in the body, during which time ester hydrolysis may occur, releasing the free steroid. Resorption and hydrolysis take place independently, since plasma with inactivated enzymes (heated to 55°) eluted the compds. from a filter paper strip as rapidly as did normal plasma.
  7. van der Vies J (August 1970). "Model studies in vitro with long-acting hormonal preparations". Acta Endocrinol. 64 (4): 656–69. doi:10.1530/acta.0.0640656. PMID 5468664.
  8. Hobbelen PM, Coert A, Geelen JA, van der Vies J (January 1975). "Interactions of steroids with serum lipoproteins". Biochem. Pharmacol. 24 (2): 165–72. doi:10.1016/0006-2952(75)90273-7. PMID 163092.
  9. J. Ferin (September 1972). "Effects, Duration of Action and Metabolism in Man". In M. Tausk (ed.). Pharmacology of the Endocrine System and Related Drugs: Progesterone, Progestational Drugs and Antifertility Agents. II. Pergamon Press. pp. 13–24. ISBN 978-0080168128. OCLC 278011135.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.