Jet injector

A jet injector is a type of medical injecting syringe device used for a method of drug delivery known as jet injection, in which a narrow, high-pressure stream of liquid penetrates without needle the outermost layer of the skin (stratum corneum) to deliver medication to targeted underlying tissues of the epidermis or dermis ("cutaneous" injection, also known as classical "intradermal" injection), fat ("subcutaneous" injection), or muscle ("intramuscular" injection).

A jet injector being used in mass vaccinations, 1976 swine flu outbreak, United States.

The jet stream is usually generated by the pressure of a piston in an enclosed liquid-filled chamber. The piston is usually pushed by the release of a compressed metal spring, although investigational devices may use piezoelectric effects and other novel technologies to pressurize the liquid in the chamber. The springs of currently-marketed and historical devices may be compressed by operator muscle power, hydraulic fluid, built-in battery-operated motors, compressed air or gas, and other means. Gas-powered and hydraulically-powered devices may involve hoses that carry compressed gas or hydraulic fluid from separate cylinders of gas, electric air pumps, foot-pedal pumps, or other components to reduce the size and weight of the hand-held part of the system and to allow faster and less-tiring methods to perform consecutive vaccinations.

Jet injectors were used for mass vaccination, and as an alternative to needle syringes for diabetics to inject insulin. As well as health uses, similar devices are used in other industries to inject grease or other fluid.

The term "hypospray", although better known within science-fiction, originates from an actual jet injector known as the Hypospray and has been cited within several scientific articles.[1][2][3]

Types

A Med-E-Jet vaccination gun from 1980

A jet injector, also known as a jet gun injector, air gun, or pneumatic injector, is a medical instrument that uses a high-pressure jet of liquid medication to penetrate the skin and deliver medication under the skin without a needle. Jet injectors can be single-dose or multi-dose jet injectors.

Throughout the years jet injectors have been redesigned to overcome the risk of carrying contamination to subsequent subjects. To try to stop the risk, researchers placed a single-use protective cap over the reusable nozzle. The protective cap was intended to act as a shield between the reusable nozzle and the patient's skin. After each injection the cap would be discarded and replaced with a sterile one. These devices were known as protector cap needle-free injectors or PCNFI.[4] A safety test by Kelly and colleagues (2008)[5] found a PCNFI device failed to prevent contamination. After administering injections to hepatitis B patients, researchers found hepatitis B had penetrated the protective cap and contaminated the internal components of the jet injector, showing that the internal fluid pathway and patient contacting parts cannot safely be reused.

Researchers developed a new jet injection design by combining the drug reservoir, plunger and nozzle into a single-use disposable cartridge. The cartridge is placed onto the tip of the jet injector and when activated a rod pushes the plunger forward. This device is known as a disposable-cartridge jet injectors (DCJI).[4]

The International Standards Organization recommended abandoning the use of the name "jet injector”, which is associated with a risk of cross-contamination and rather refer to newer devices as "needle-free injectors".[6]

Modern needle-free injector brands

The Biojector 2000 is a made of gas-cartridge-powered jet injector. It is claimed by its manufacturer that it can deliver intramuscular injections and subcutaneous injections up to 1 milliliter. The part which touches the patient's skin is single-use and can be replaced easily. It can be powered from a large compressed gas cylinder instead of gas cartridges. It is made by Bioject.[7]

The Vision (MJ7) is a compact, spring-powered jet injector. It can deliver up to 1.6 ml in 0.03 ml increments, and is designed to last 3000 injections. The medication travels through a hole in the needle-free syringe that is about half the diameter of a 30-gauge syringe. The part which touches the patient's skin can be used for a week. The device was designed by Antares Pharma (formerly Medi-Jector).[8]

The PharmaJet Needle-Free Injector delivers vaccines either intramuscularly or subcutaneously by means of a narrow, precise fluid stream syringe that delivers the medicine or vaccine through the skin in one-tenth of a second.[9]

Diabetics have been using jet injectors in the United States for at least 20 years. These devices have all been spring-loaded. At their peak, jet injectors accounted for only 7% of the injector market. Currently, the only model available in the United States is the Injex 23. In the United Kingdom, the Insujet has recently entered the market. As of June 2015, the Insujet is available in the UK and a few select countries.

The J-Tip is a single-use, sterile, completely needle free jet injector that administers lidocaine subcutaneously prior to routine needle procedures such as IV starts and blood draws. The J-Tip is being used as a prenumber for needle procedures by giving an anesthetic effect within 1–2 minutes. It is being used in hospitals across the United States.[10]

Concerns

Since the jet injector breaks the barrier of the skin, there is a risk of blood and biological material being transferred from one user to the next. Research on the risks of cross-contamination arose immediately after the invention of jet injection technology.

There are three inherent problems with jet injectors:

Splash-back

Splash-back refers to the jet stream penetrating the outer skin at a high velocity causing the jet stream to ricochet backwards and contaminate the nozzle.[11]

Instances of splash-back have been published by several researchers. Samir Mitragrotri visually captured splash-back after discharging a multi-use nozzle jet injector using high-speed microcinematography.[12] Hoffman and colleagues (2001) also observed the nozzle and internal fluid pathway of the jet injector becoming contaminated.[13]

Fluid suck-back

Fluid suck-back occurs when blood left on the nozzle of the jet injector is sucked back into the injector orifice, contaminating the next dose to be fired.[14]

The CDC has acknowledged that the most widely used jet injector in the world, the Ped-O-Jet, sucked fluid back into the gun. "After injections, they [CDC] observed fluid remaining on the Ped-O-Jet nozzle being sucked back into the device upon its cocking and refilling for the next injection (beyond the reach of alcohol swabbing or acetone swabbing)," stated Dr. Bruce Weniger.[15]

Retrograde flow

Retrograde flow happens after the jet stream penetrates the skin and creates a hole, if the pressure of the jet stream causes the spray, after mixing with tissue fluids and blood, to rebound back out of the hole, against the incoming jet stream and back into the nozzle orifice.[16]

This problem has been reported by numerous researchers.[17][18][13][19][20]

Hepatitis B can be transmitted by less than one millionth of a millilitre[21] so makers of injectors must ensure there is no cross-contamination between applications. The World Health Organization no longer recommends jet injectors for vaccination due to risks of disease transmission.[22]

Numerous studies have found cross-infection of diseases from jet injections. An experiment using mice, published in 1985, showed that jet injectors would frequently transmit the viral infection lactate dehydrogenase elevating virus (LDV) from one mouse to another.[23] Another study used the device on a calf, then tested the fluid remaining in the injector for blood. Every injector they tested had detectable blood in a quantity sufficient to pass on a virus such as hepatitis B.[21]

From 1984 to 1985, a weight-loss clinic in Los Angeles administered human chorionic gonadotropin (hCG) with a Med-E-Jet injector. CDC investigation found 57 out of 239 people who had received the jet injection tested positive for hepatitis B.[24]

Jet injectors have also been found to inoculate bacteria from the environment into users. In 1988 a podiatry clinic used a jet injector to deliver local anaesthetic into patients' toes. Eight of these patients developed infections caused by Mycobacterium chelonae. The injector was stored in a container of water and disinfectant between use, but the organism grew in the container.[25] This species of bacteria is sometimes found in tap water, and had been previously associated with infections from jet injectors.[26]

History

See also Hypospray#Real-world timeline.
  • 19th century: Workmen in France had accidental jet injections with high-powered grease guns[27]
  • December 18, 1866: Jules-Auguste Béclard presented Dr. Jean Sales-Girons invention, Appareil pour l'aquapuncture to l'Académie Impériale de Médecine in Paris. This is the earliest documented jet injector to administer water or medicine under enough pressure to penetrate the skin without the use of a needle.[28]
  • 1920s: Diesel engines began to be made in large quantities: thus the start of serious risk of accidental jet-injection by their fuel injectors in workshop accidents.
  • 1935: Arnold K. Sutermeister, a mechanical engineer, witnessed a worker injure his hand from a high-pressure jet stream and theorized of using the concept to administer medicine. Sutermeister collaborates with Dr. John Roberts in creating a prototype jet injector.[29]
  • 1937: First published accidental jet injection by a diesel engine's fuel injector.[30]
  • 1936: Marshall Lockhart, an engineer, filed a patent for his idea of a jet injector after learning of Sutermeister's invention.[31]
  • 1947: Lockhart's jet injector, known as the Hypospray, was introduced for clinical evaluation by Dr. Robert Hingson and Dr. James Hughes.[32]
  • 1951: The Commission on Immunization of the Armed Forces Epidemiological Board requested the Army Medical Service Graduate School to develop "jet injection equipment specifically intended for rapid semiautomatic operation in large-scale immunization programs."[33] This device became known as the multi-use nozzle jet injector (MUNJI).
  • 1954–1967: Dr. Robert Hingson partook in numerous health expeditions with his charity, Brother's Brother Foundation. Hingson stated he vaccinated upwards of 2 million people across the globe using various multi-use nozzle jet injectors.[34]
  • 1955: Warren and colleagues (1955) reported on the introduction of a prototype multi-dose jet injector, known as the Press-O-Jet, which had successfully undergone clinical testing upon 1,685 soldiers within the U.S. Army.[33]
Hypospray Jet Injector used in typhus vaccination at a US military base, 1959.
  • 1959: Abram Benenson, the Lieutenant Colonel for the Division of Immunology at Walter Reed Army Institute of Research, reported on the development of what became widely known as the Ped-O-Jet. The invention was the collaboration of Dr. Benenson and Aaron Ismach. Ismach was a civilian scientist working for the US Army Medical Equipment and Research Development Laboratory.[35]
  • 1961: The Department of the Army made multi-use nozzle jet injectors the standard for administering immunizations.[36]
  • 1961: The CDC implemented mass vaccination programs across the United States called Babies and Breadwinners to combat polio. These vaccination events used multi-use nozzle jet injectors.[37]
  • 1964: Aaron Ismach invented an intradermal nozzle for the Ped-O-Jet injector, which allowed delivery of the shallower smallpox vaccinations.[38]
  • 1964: Aaron Ismach was awarded the Exceptional Civilian Service Award at the Eighth Annual Secretary of the Army Awards ceremonies for his invention of the intradermal nozzle.[39]
  • 1966: Oscar Banker, an engineer, patented his invention of a portable multi-use nozzle jet injector that utilizes CO2 as its energy source. This would become known as the Med-E-Jet.[40]
  • September 1966: The Star Trek series started to use its own jet injector device under the name "hypospray".
  • 1967: Nicaraguans undergoing smallpox vaccinations nicknamed the gun-like jet injectors (Ped-O-Jet and Med-E-Jet) as "la pistola de la paz", meaning "the pistol of peace". The name "Peace Guns" stuck.[41]
A jet injector being used in 1973, in Campada, Guinea-Bissau
  • 1976: The United States Agency for International Development (USAID) published a book called War on Hunger which detailed the War Against Smallpox which Ismach's Jet Injector gun was used to eradicate the disease in Africa and Asia. The US government spent $150 million a year to prevent its recurrence in North America.
  • 1986: A hepatitis B outbreak occurs amongst 57 patients at a Los Angeles clinic due to a Med-E-Jet injector.[24]
  • 1997: The US Department of Defense, the jet injector's biggest user, announced that it would stop using it for mass vaccinations due to concerns about infection.[42][43]
  • 2003: The US Department of Veterans Affairs recognized for the first time that a veteran acquired Hepatitis C from his military jet injections and awarded service-connection for his disability.[44]
  • April 2010: A laser-based reusable microjet injector for transdermal drug delivery was made by Tae-hee Han and Jack J. Yoh[45]
  • February 13, 2013: The PharmaJet Stratis Needle-Free Injector received WHO PQS Certification.[46]
  • 2013: The most comprehensive review and history of jet injection to date is published in the 6th edition of the textbook Vaccines.[47]
  • August 14, 2014: The U.S. Food and Drug Administration (FDA) approved the use of the PharmaJet Stratis 0.5ml Needle-free Jet Injector for delivery of one particular flu vaccine (AFLURIA® by bioCSL Inc.) in people 18 through 64 years of age.[48]
  • October 2017: David Fernandez Rivas developed a new type of laser-based jet injector[49][50]

References

  1. Clarke AK, Woodland J (February 1975). "Comparison of two steroid preparations used to treat tennis elbow, using the hypospray". Rheumatol Rehabil. 14 (1): 47–9. doi:10.1093/rheumatology/14.1.47. PMID 1091959.
  2. Hughes GR (June 1969). "The use of the hypospray in the treatment of minor orthopaedic conditions". Proc. R. Soc. Med. 62 (6): 577. PMC 1811070. PMID 5802730.
  3. Baum J, Ziff M (March 1967). "Use of the hypospray jet injector for intra-articular injection". Ann. Rheum. Dis. 26 (2): 143–5. doi:10.1136/ard.26.2.143. PMC 1031030. PMID 6023696.
  4. Jet Infectors (2016-10-23). "What Is A Jet Injector?". jetinfectors.com. Retrieved October 23, 2016.
  5. Kelly, K (March 4, 2008). "Preventing contamination between injections with multiple-use nozzle needle-free injectors: a safety trial". Vaccine. 26 (10): 1344–1352. doi:10.1016/j.vaccine.2007.12.041. PMID 18272265.
  6. International Standards Organization (June 3, 1999). "Needle-free injectors for medical use [draft report]" (PDF). Archived from the original on March 3, 2000. Cite journal requires |journal= (help)CS1 maint: BOT: original-url status unknown (link)
  7. "Archived copy". Archived from the original on 2006-10-16. Retrieved 2006-10-23.CS1 maint: archived copy as title (link)
  8. "SigFig - the easiest way to manage & improve your investments". Archived from the original on 2015-12-22. Retrieved 2015-12-14.
  9. "PharmaJet Product Page". Cite journal requires |journal= (help)
  10. "Needle Free Jet Injection System - Needle Free Injection System". Needle Free Injection System. Retrieved 2018-05-25.
  11. Jet Infectors. "Inherent Problems With Jet Injectors" (PDF). Jet Infectors. Retrieved July 31, 2017.
  12. Mitragotri, Samir (July 2006). "Current status and future prospects of needle-free liquid jet injectors". Nat Rev Drug Discov. 5 (7): 543–548. doi:10.1038/nrd2076. PMID 16816837.
  13. Hoffman, Peter; Abuknesha, RA; Andrews, NJ; Samuel, D; Lloyd, JS (2001). "A model to assess the infection potential of jet injectors used in mass immunization". Vaccine. 19 (28–29): 4020–4027. doi:10.1016/s0264-410x(01)00106-2. PMID 11427278.
  14. Jet Infectors. "Inherent Problems With Jet Injectors" (PDF). Jet Infectors. Retrieved July 31, 2017.
  15. Weniger, BG; Jones, TS; Chen, RT. "The Unintended Consequences of Vaccine Delivery Devices Used to Eradicate Smallpox: Lessons for Future Vaccination Methods" (PDF). Jet Infectors. Jet Infectors. Retrieved October 23, 2016.
  16. Jet Infectors. "Inherent Problems With Jet Injectors" (PDF). Jet Infectors. Retrieved July 31, 2017.
  17. Kale, TR; Momin, M (2014). "Needle free injection technology – An overview". Innovations. 5 (1). doi:10.24926/iip.v5i1.330.
  18. Suria, H; Van Enk, R; Gordon, R; Mattano, LA Jr. (1999). "Risk of cross-patient infection with clinical use of a needleless injector device". American Journal Infect Control. 27 (5): 444–7. doi:10.1016/s0196-6553(99)70012-x. PMID 10511493.
  19. World Health Organization. "STEERING GROUP ON THE DEVELOPMENT OF JET INJECTION FOR IMMUNIZATION" (PDF). asknod.org. Retrieved October 23, 2016.
  20. Kelly, K; Loskutov, A; Zehrung, D; Puaa, K; LaBarre, P; Muller, N; Guiqiang, W; Ding, H; Hu, D; Blackwelder, WC (2008). "Preventing contamination between injections with multi-use nozzle needle-free injectors: a safety trial". Vaccine. 26 (10): 1344–1352. doi:10.1016/j.vaccine.2007.12.041. PMID 18272265.
  21. Hoffman, P.N; R.A Abuknesha; N.J Andrews; D Samuel; J.S Lloyd (2001-07-16). "A model to assess the infection potential of jet injectors used in mass immunisation. Population risk (Veterans and children) for another deadly virus, previously known as "non A- non B" or Chronic Hepatitis C "CHC or HCV"". Vaccine. 19 (28–29): 4020–7. doi:10.1016/S0264-410X(01)00106-2. PMID 11427278.
  22. World Health Organization (2005-07-13). "Solutions: Choosing Technologies for Safe Injections". Archived from the original on 21 September 2012. Retrieved 2011-05-06.
  23. Brink, P.R.G.; Van Loon, M.; Trommelen, J.C.M.; Gribnau, W.J.; Smale-Novakova, I.R.O. (1985-12-01). "Virus Transmission by Subcutaneous Jet Injection". J Med Microbiol. 20 (3): 393–7. doi:10.1099/00222615-20-3-393. PMID 4068027.
  24. Canter, Jeffrey; Katherine Mackey; Loraine S. Good; Ronald R. Roberto; James Chin; Walter W. Bond; Miriam J. Alter; John M. Horan (1990-09-01). "An Outbreak of Hepatitis B Associated With Jet Injections in a Weight Reduction Clinic". Arch Intern Med. 150 (9): 1923–1927. doi:10.1001/archinte.1990.00390200105020. PMID 2393323.
  25. Wenger, Jay D.; John S. Spika; Ronald W. Smithwick; Vickie Pryor; David W. Dodson; G. Alexander Carden; Karl C. Klontz (1990-07-18). "Outbreak of Mycobacterium chelonae Infection Associated With Use of Jet Injectors". JAMA. 264 (3): 373–6. doi:10.1001/jama.1990.03450030097040. PMID 2362334.
  26. Inman, P.M.; Beck, A.; Brown, A.E.; Stanford, J.L. (August 1969). "Outbreak of injection abscesses due to Mycobacterium abscessus". Archives of Dermatology. 100 (2): 141–7. doi:10.1001/archderm.100.2.141. PMID 5797954.
  27. "at". Healthfreelancing.com. Archived from the original on 10 September 2010. Retrieved 5 April 2011.
  28. Béclard, F (1866). "Présentation de l'injecteur de Galante, Séance du 18 décembre 1866, Présidence de M. Bouchardat [Presentation of Jet Injector of Galante, H., meeting of 18 December 1866, Monsieur Bouchardat presiding]". Bulletin de l'Académie Impériale de Médecine. 32: 321–327.
  29. Roberts, JF (1935). "Local infiltration of tissues from a machine designed to deliver high pressure, high velocity jets of fluid [Doctoral Thesis]". Columbia University. College of Physicians and Surgeons.
  30. Rees CE (11 September 1937). "Penetration of tissue by fuel oil under high pressure from diesel engine". JAMA. 109 (11): 866–7. doi:10.1001/jama.1937.92780370004012c.
  31. Lockhart, Marshall (June 22, 1943). "Hypodermic Injector. Patent Number US 2322244". Cite journal requires |journal= (help)
  32. Hingson, RA; Hughes, JG (1947). "Clinical studies with jet injection. A new method of drug administration". Current Researches in Anesthesia and Analgesia. 26 (6): 221–230. PMID 18917536.
  33. Warren, J; Ziherl, FA; Kish, AW; Ziherl, LA (1955). "Large-scale administration of vaccines by means of an automatic jet injection syringe". JAMA. 157 (8): 633–637. doi:10.1001/jama.1955.02950250007003. PMID 13232991.
  34. Rosenberg, Henry; Axelrod, Jean (July 1998). "Robert Andrew Hingson: His Unique Contributions to World Health as Well as to Anesthesiology". Bulletin of Anesthesia History. 16 (3): 10–12. doi:10.1016/s1522-8649(98)50046-7.
  35. Benenson, AS (1959). "Mass immunization by jet injection. In: Proceedings of the International Symposium of Immunology, Opatija, Yugoslavia, 28 September – 1 October 1959": 393–399. Cite journal requires |journal= (help)
  36. Department of the Army. "Annual Report of the Surgeon General United States Army Fiscal Year 1961". U.S. Army. Retrieved July 31, 2017.
  37. Jet Infectors (2017-04-04). "Babies and Breadwinners: 1961 Mass Polio Vaccination Campaign". Jet Infectors. Retrieved July 31, 2017.
  38. Ismach, A (July 14, 1964). "Intradermal nozzle for jet injection devices. Patent Number US 3140713". Cite journal requires |journal= (help)
  39. Army Research and Development (June 1968). "1968 R&D Achievement Awards Won By 18 Individuals, 5 Teams". Army Research and Development Magazine. 9 (6): 3.
  40. Banker, Oscar (December 20, 1966). "Jet Type Portable Inoculator. Patent Number US 3292621A". Retrieved July 31, 2017. Cite journal requires |journal= (help)
  41. Lord, A (2015-08-25). "The Peace Gun". Smithsonian. Retrieved July 31, 2017.
  42. "The DoD order". Archived from the original on 2012-12-12. Retrieved 2007-11-28.
  43. "Veterans info page". Archived from the original on 2007-12-05. Retrieved 2007-11-28.
  44. Cleveland Veterans Affairs Regional Office. "There is Hope for Hepatitis C". Yahoo. Retrieved July 31, 2017.
  45. A laser based reusable microjet injector for transdermal drug delivery
  46. "PharmaJet's Stratis® Needle-free Injector Receives WHO PQS Certification as a Pre-qualified Delivery Device for Vaccine Administration". FierceVaccines.
  47. "Weniger BG, Papania MJ. Alternative Vaccine Delivery Methods [Chapter 61]. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines, 6th ed. Philadelphia: Elsevier/Saunders; 2013, pp. 1200–31" (PDF) (In the public domain as the work of an author on official duties as employee of the U.S. Government.).
  48. "Flu Vaccination by Jet Injector | CDC". 2017-10-12.
  49. Toward jet injection by continuous-wave laser cavitation
  50. Needle free injector
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.