Human nutrition

Human nutrition deals with the provision of essential nutrients in food that are necessary to support human life and health. Poor nutrition is a chronic problem often linked to poverty, food security or a poor understanding of nutrition and dietary practices.[1] Malnutrition and its consequences are large contributors to deaths and disabilities worldwide.[2] Good nutrition is necessary for children to grow physically, and for normal human biological development.[1]

Foods high in magnesium (an example of a nutrient)


The human body contains chemical compounds such as water, carbohydrates, amino acids (found in proteins), fatty acids (found in lipids), and nucleic acids (DNA and RNA). These compounds are composed of elements such as carbon, hydrogen, oxygen, nitrogen, phosphorus. Any study done to determine nutritional status must take into account the state of the body before and after experiments, as well as the chemical composition of the whole diet and of all the materials excreted and eliminated from the body (including urine and feces).


The seven major classes of nutrients are carbohydrates, fats, fiber, minerals, proteins, vitamins, and water. Nutrients can be grouped as either macronutrients or micronutrients (needed in small quantities). Macronutrients provide energy, they are carbohydrates, fats, and proteins.[3] The micronutrients are minerals and vitamins.[4]

The macronutrients provide structural material (amino acids from which proteins are built, and lipids from which cell membranes and some signaling molecules are built), and energy. Some of the structural material can also be used to generate energy internally, and in either case it is measured in Joules or kilocalories (often called "Calories" and written with a capital 'C' to distinguish them from little 'c' calories). Carbohydrates and proteins provide 17 kJ approximately (4 kcal) of energy per gram, while fats provide 37 kJ (9 kcal) per gram,[5] though the net energy from either depends on such factors as absorption and digestive effort, which vary substantially from instance to instance.

Vitamins, minerals, fiber, and water do not provide energy, but are required for other reasons. A third class of dietary material, fiber (i.e., nondigestible material such as cellulose), seems also to be required, for both mechanical and biochemical reasons, though the exact reasons remain unclear. For all age groups, males need to consume higher amounts of macronutrients than females. In general, intakes increase with age until the second or third decade of life.[6]

Molecules of carbohydrates and fats consist of carbon, hydrogen, and oxygen atoms. Carbohydrates range from simple monosaccharides (glucose, fructose, galactose) to complex polysaccharides (starch). Fats are triglycerides, made of assorted fatty acid monomers bound to a glycerol backbone. Some fatty acids, but not all, are essential in the diet: they cannot be synthesized in the body. Protein molecules contain nitrogen atoms in addition to carbon, oxygen, and hydrogen.[7] The fundamental components of protein are nitrogen-containing amino acids, some of which are essential in the sense that humans cannot make them internally. Some of the amino acids are convertible (with the expenditure of energy) to glucose and can be used for energy production just as ordinary glucose. By breaking down existing protein, some glucose can be produced internally; the remaining amino acids are discarded, primarily as urea in urine. This occurs naturally when atrophy takes place, or during periods of starvation.


Grain products: rich sources of complex and simple carbohydrates

Carbohydrates may be classified as monosaccharides, disaccharides or polysaccharides depending on the number of monomer (sugar) units they contain. They are a diverse group of substances, with a range of chemical, physical and physiological properties.[8] They make up a large part of foods such as rice, noodles, bread, and other grain-based products,[9][10] but they are not an essential nutrient, meaning a human does not need to eat carbohydrates.[11] The brain is the largest consumer of sugars in the human body, and uses particularly large amounts of glucose, accounting for 20% of total body glucose consumption[12] The brain uses mostly glucose for energy unless it is insufficient, in which case it switches to using fats.[13]

Monosaccharides contain one sugar unit, disaccharides two, and polysaccharides three or more. Monosaccharides include glucose, fructose and galactose.[14] Disaccharides include sucrose, lactose, and maltose; purified sucrose, for instance, is used as table sugar.[15] Polysaccharides, which include starch and glycogen, are often referred to as 'complex' carbohydrates because they are typically long multiple-branched chains of sugar units.

Simple carbohydrates are absorbed quickly, and therefore raise blood-sugar levels more rapidly than other nutrients. However, the most common plant carbohydrate nutrient, starch, varies in its absorption. Gelatinized starch (starch heated for a few minutes in the presence of water) is far more digestible than plain starch, and starch which has been divided into fine particles is also more absorbable during digestion. The increased effort and decreased availability reduces the available energy from starchy foods substantially and can be seen experimentally in rats and anecdotally in humans. Additionally, up to a third of dietary starch may be unavailable due to mechanical or chemical difficulty.


A molecule of dietary fat typically consists of several fatty acids (containing long chains of carbon and hydrogen atoms), bonded to a glycerol. They are typically found as triglycerides (three fatty acids attached to one glycerol backbone). Fats may be classified as saturated or unsaturated depending on the chemical structure of the fatty acids involved.


Dietary fiber is a carbohydrate, specifically a polysaccharide, which is incompletely absorbed in humans and in some animals. Like all carbohydrates, when it is metabolized, it can produce four Calories (kilocalories) of energy per gram, but in most circumstances, it accounts for less than that because of its limited absorption and digestibility.

The two subcategories are insoluble and soluble fiber.

Insoluble dietary fiber
Consists mainly of cellulose, a large carbohydrate polymer that is indigestible by humans, because humans do not have the required enzymes to break it down, and the human digestive system does not harbor enough of the types of microbes that can do so.
Soluble dietary fiber
Comprises a variety of oligosaccharides, waxes, esters, resistant starches, and other carbohydrates that dissolve or gelatinize in water. Many of these soluble fibers can be fermented or partially fermented by microbes in the human digestive system to produce short-chain fatty acids which are absorbed and therefore introduce some caloric content.

Whole grains, beans, and other legumes, fruits (especially plums, prunes, and figs), and vegetables are good sources of dietary fiber. Fiber is important to digestive health and is thought to reduce the risk of colon cancer. For mechanical reasons, fiber can help in alleviating both constipation and diarrhea. Fiber provides bulk to the intestinal contents, and insoluble fiber especially stimulates peristalsis – the rhythmic muscular contractions of the intestines which move digesta along the digestive tract. Some soluble fibers produce a solution of high viscosity; this is essentially a gel, which slows the movement of food through the intestines. Additionally, fiber, perhaps especially that from whole grains, may help lessen insulin spikes and reduce the risk of type 2 diabetes.


Proteins are the basis of many animal body structures (e.g. muscles, skin, and hair) and form the enzymes which catalyse chemical reactions throughout the body. Each protein molecule is composed of amino acids which contain nitrogen and sometimes sulphur (these components are responsible for the distinctive smell of burning protein, such as the keratin in hair). The body requires amino acids to produce new proteins (protein retention) and to replace damaged proteins (maintenance). Amino acids are soluble in the digestive juices within the small intestine, where they are absorbed into the blood. Once absorbed, they cannot be stored in the body, so they are either metabolized as required or excreted in the urine.

Proteins consist of amino acids in different proportions. The most important aspect and defining characteristic of protein from a nutritional standpoint is its amino acid composition.[16] Amino acids which an animal cannot synthesize on its own from smaller molecules are deemed essential. The synthesis of some amino acids can be limited under special pathophysiological conditions, such as prematurity in the infant or individuals in severe catabolic distress, and those are called conditionally essential.[16]

There is an ongoing debate about the differences in nutritional quality and adequacy of protein from vegan, vegetarian and animal sources, though many studies and institutions have found that a well-planned vegan or vegetarian diet contains enough high-quality protein to support the protein requirements of both sedentary and active people at all stages of life.[17][18][19][20]


Dietary minerals are the chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen that are present in nearly all organic molecules. The term "mineral" is archaic, since the intent is to describe simply the less common elements in the diet. Some are heavier than the four just mentioned – including several metals, which often occur as ions in the body. Some dietitians recommend that these be supplied from foods in which they occur naturally, or at least as complex compounds, or sometimes even from natural inorganic sources (such as calcium carbonate from ground oyster shells). Some are absorbed much more readily in the ionic forms found in such sources. On the other hand, minerals are often artificially added to the diet as supplements; the most well-known is likely iodine in iodized salt which prevents goiter.

The minerals required in the largest quantities are generally electrolytes, these include:[21][22]

  • Calcium (Ca2+) is vital to the health of the muscular, circulatory, and digestive systems; is indispensable to the building of bone; and supports the synthesis and function of blood cells. For example, calcium is used to regulate the contraction of muscles, nerve conduction, and the clotting of blood. It can play this role because the Ca2+ ion forms stable coordination complexes with many organic compounds, especially proteins; it also forms compounds with a wide range of solubilities, enabling the formation of the skeleton.[23]
  • Chlorine as chloride ions; very common electrolyte; see sodium, below.
  • Magnesium, required for processing ATP and related reactions (builds bone, causes strong peristalsis, increases flexibility, increases alkalinity). Approximately 50% is in bone, the remaining 50% is almost all inside body cells, with only about 1% located in extracellular fluid. Food sources include oats, buckwheat, tofu, nuts, caviar, green leafy vegetables, legumes, and chocolate.[24][25]
  • Phosphorus, required component of bones; essential for energy processing.[26] Approximately 80% is found in inorganic portion of bones and teeth. Phosphorus is a component of every cell, as well as important metabolites, including DNA, RNA, ATP, and phospholipids. Also important in pH regulation. It is an important electrolyte in the form of phosphate.[27] Food sources include cheese, egg yolk, milk, meat, fish, poultry, whole-grain cereals, and many others.[24]
  • Potassium, a very common electrolyte (heart and nerve health). With sodium, potassium is involved in maintaining normal water balance, osmotic equilibrium, and acid-base balance. In addition to calcium, it is important in the regulation of neuromuscular activity. Food sources include bananas, avocados, vegetables, potatoes, legumes, fish, and mushrooms.[25]
  • Sodium, a very common electrolyte; not generally found in dietary supplements, despite being needed in large quantities, because the ion is very common in food: typically as sodium chloride, or common salt.
Minerals Required in Smaller Amounts and Trace Minerals

Many elements are required in smaller amounts (microgram quantities), usually because they play a catalytic role in enzymes.[28] Some trace mineral elements (RDA < 200 mg/day) are, in alphabetical order:

  • Cobalt as a component of the vitamin B12 family of coenzymes
  • Copper required component of many redox enzymes, including cytochrome c oxidase
  • Chromium required for sugar metabolism
  • Iodine required not only for the biosynthesis of thyroxin, but probably, for other important organs as breast, stomach, salivary glands, thymus etc. (see Iodine deficiency); for this reason iodine is needed in larger quantities than others in this list, and sometimes classified with the macrominerals;[29] Nowadays it is most easily found in iodized salt, but there are also natural sources such as Kombu.[30][31]
  • Iron required for many enzymes, and for hemoglobin and some other proteins
  • Manganese (processing of oxygen)
  • Molybdenum required for xanthine oxidase and related oxidases
  • Selenium required for peroxidase (antioxidant proteins)
  • Zinc required for several enzymes such as carboxypeptidase, liver alcohol dehydrogenase, carbonic anhydrase
Ultratrace Minerals

Ultratrace minerals are an as yet unproven aspect of human nutrition, and may be required at amounts measured in very low ranges of μg/day. Many ultratrace elements have been suggested as essential, but such claims have usually not been confirmed. Definitive evidence for efficacy comes from the characterization of a biomolecule containing the element with an identifiable and testable function. These include:[32][33]

  • Bromine
  • Arsenic
  • Nickel
  • Fluorine
  • Boron
  • Lithium
  • Strontium
  • Silicon


As with the minerals discussed above, some vitamins are recognized as essential nutrients, necessary in the diet for good health. (Vitamin D is the exception: it can alternatively be synthesized in the skin, in the presence of UVB radiation.) Certain vitamin-like compounds that are recommended in the diet, such as carnitine, are thought useful for survival and health, but these are not "essential" dietary nutrients because the human body has some capacity to produce them from other compounds. Moreover, thousands of different phytochemicals have recently been discovered in food (particularly in fresh vegetables), which may have desirable properties including antioxidant activity (see below); experimental demonstration has been suggestive but inconclusive. Other essential nutrients not classed as vitamins include essential amino acids (see above), essential fatty acids (see above), and the minerals discussed in the preceding section.

Vitamin deficiencies may result in disease conditions: goiter, scurvy, osteoporosis, impaired immune system, disorders of cell metabolism, certain forms of cancer, symptoms of premature aging, and poor psychological health (including eating disorders), among many others.[34]


Malnutrition refers to insufficient, excessive, or imbalanced consumption of nutrients. In developed countries, the diseases of malnutrition are most often associated with nutritional imbalances or excessive consumption. Although there are more people in the world who are malnourished due to excessive consumption, according to the United Nations World Health Organization, the greatest challenge in developing nations today is not starvation, but insufficient nutrition – the lack of nutrients necessary for the growth and maintenance of vital functions. The causes of malnutrition are directly linked to inadequate macronutrient consumption and disease, and are indirectly linked to factors like “household food security, maternal and child care, health services, and the environment.” [2]


Nutrients∗ Deficiency Excess
Food Energy lower physical and mental abilities; starvation, marasmus obesity, diabetes mellitus, cardiovascular disease
Simple carbohydrates none diabetes mellitus, obesity
Complex carbohydrates none obesity
Saturated fat low sex hormone levels[35] cardiovascular disease[36]
Trans fat none cardiovascular disease
Unsaturated fat none obesity
Fat during development: stunted brain development and reduced brain weight; neurodegenerative diseases; malabsorption of fat-soluble vitamins, rabbit starvation (if protein intake is high), cardiovascular disease[36]
Omega-3 fats cardiovascular disease bleeding, hemorrhages
Omega-6 fats none cardiovascular disease, cancer
Cholesterol during development: deficiencies in myelinization of the brain; demyelination of the brain and neurodegenerative diseases (multiple sclerosis, Alzheimer) cardiovascular disease[36]
Protein kwashiorkor
Sodium hyponatremia hypernatremia, hypertension
Iron anemia cirrhosis, cardiovascular disease
Iodine goiter, hypothyroidism Iodine toxicity (goiter, hypothyroidism)
Vitamin A xerophthalmia and night blindness, low testosterone levels hypervitaminosis A (cirrhosis, hair loss)
Vitamin B1 beriberi
Vitamin B2 cracking of skin and corneal unclearation
Niacin pellagra dyspepsia, cardiac arrhythmias, birth defects
Vitamin B12 pernicious anemia
Vitamin C scurvy diarrhea causing dehydration
Vitamin D rickets, osteoporosis, balance, immune system, inflammation hypervitaminosis D (dehydration, vomiting, constipation)
Vitamin E nervous disorders hypervitaminosis E (anticoagulant: excessive bleeding)
Vitamin K hemorrhage
Calcium osteoporosis, tetany, carpopedal spasm, laryngospasm, cardiac arrhythmias fatigue, depression, confusion, anorexia, nausea, vomiting, constipation, pancreatitis, increased urination
Magnesium hypertension weakness, nausea, vomiting, impaired breathing, and hypotension
Potassium hypokalemia, cardiac arrhythmias hyperkalemia, palpitations

Mental agility

Research indicates that improving the awareness of nutritious meal choices and establishing long-term habits of healthy eating has a positive effect on a cognitive and spatial memory capacity, potentially increasing a student's potential to process and retain academic information.

Some organisations have begun working with teachers, policymakers, and managed food service contractors to mandate improved nutritional content and increased nutritional resources in school cafeterias from primary to university level institutions. Health and nutrition have been proven to have close links with overall educational success.[37] Currently less than 10% of American college students report that they eat the recommended five servings of fruit and vegetables daily.[38] Better nutrition has been shown to affect both cognitive and spatial memory performance; a study showed those with higher blood sugar levels performed better on certain memory tests.[39] In another study, those who consumed yogurt performed better on thinking tasks when compared to those who consumed caffeine free diet soda or confections.[40] Nutritional deficiencies have been shown to have a negative effect on learning behavior in mice as far back as 1951.[41] "Better learning performance is associated with diet induced effects on learning and memory ability".[42]

  • The "nutrition-learning nexus" demonstrates the correlation between diet and learning and has application in a higher education setting.
  • We find that better nourished children perform significantly better in school, partly because they enter school earlier and thus have more time to learn but mostly because of greater learning productivity per year of schooling."[43]
  • 91% of college students feel that they are in good health while only 7% eat their recommended daily allowance of fruits and vegetables.[38]
  • Nutritional education is an effective and workable model in a higher education setting.[43][44]
  • More "engaged" learning models that encompass nutrition is an idea that is picking up steam at all levels of the learning cycle.[45]

Mental disorders

Nutritional supplement treatment may be appropriate for major depression, bipolar disorder, schizophrenia, and obsessive compulsive disorder, the four most common mental disorders in developed countries.[46] Lakhan and Vieira mentioned that the supplements possess amino acids that may change into neurotransmitters and improve mental disorders. Supplements that have been studied most for mood elevation and stabilization include eicosapentaenoic acid and docosahexaenoic acid (each of which are an omega-3 fatty acid contained in fish oil and algae oil, but not in flaxseed oil), vitamin B12, folic acid, and inositol.


One 2007 report stated that a relationship exists between lifestyle (including food consumption) and cancer prevention.[47]

Metabolic syndrome and obesity

Several lines of evidence indicate lifestyle-induced hyperinsulinemia and reduced insulin function (i.e. insulin resistance) as decisive factors in many disease states. For example, hyperinsulinemia and insulin resistance are strongly linked to chronic inflammation, which in turn is strongly linked to a variety of adverse developments such as arterial microinjuries and clot formation (i.e. heart disease) and exaggerated cell division (i.e. cancer).[48] Hyperinsulinemia and insulin resistance (the so-called metabolic syndrome) are characterized by a combination of abdominal obesity, elevated blood sugar, elevated blood pressure, elevated blood triglycerides, and reduced HDL cholesterol.

Obesity can unfavourably alter hormonal and metabolic status via resistance to the hormone leptin, and a vicious cycle may occur in which insulin/leptin resistance and obesity aggravate one another. The vicious cycle is putatively fuelled by continuously high insulin/leptin stimulation and fat storage, as a result of high intake of strongly insulin/leptin stimulating foods and energy. Both insulin and leptin normally function as satiety signals to the hypothalamus in the brain; however, insulin/leptin resistance may reduce this signal and therefore allow continued overfeeding despite large body fat stores.

There is a debate about how and to what extent different dietary factors – such as intake of processed carbohydrates, total protein, fat, and carbohydrate intake, intake of saturated and trans fatty acids, and low intake of vitamins/minerals – contribute to the development of insulin and leptin resistance. Evidence indicates that diets possibly protective against metabolic syndrome include low saturated and trans fat intake and foods rich in dietary fiber, such as high consumption of fruits and vegetables and moderate intake of low-fat dairy products.[49]

Global nutrition challenges

The challenges facing global nutrition are disease, child malnutrition, obesity, and vitamin deficiency.


The most common non-infectious diseases worldwide, that contribute most to the global mortality rate, are cardiovascular diseases, various cancers, diabetes, and chronic respiratory problems, all of which are linked to poor nutrition. Nutrition and diet are closely associated with the leading causes of death, including cardiovascular disease and cancer. Obesity and high sodium intake can contribute to ischemic heart disease, while consumption of fruits and vegetables can decrease the risk of developing cancer.[50]

Food-borne and infectious diseases can result in malnutrition, and malnutrition exacerbates infectious disease. Poor nutrition leaves children and adults more susceptible to contracting life-threatening diseases such as diarrheal infections and respiratory infections.[1] According to the WHO, in 2011, 6.9 million children died of infectious diseases like pneumonia, diarrhea, malaria, and neonatal conditions, of which at least one third were associated with undernutrition.[51][52][53]

Child malnutrition

According to UNICEF, in 2011, 101 million children across the globe were underweight and one in four children, 165 million, were stunted in growth.[54] Simultaneously, there are 43 million children under five who are overweight or obese.[2] Nearly 20 million children under 5 suffer from severe acute malnutrition, a life-threatening condition requiring urgent treatment.[2] According to estimations at UNICEF, hunger will be responsible for 5.6 million deaths of children under the age of five this year.[1] These all represent significant public health emergencies.[50] This is because proper maternal and child nutrition has immense consequences for survival, acute and chronic disease incidence, normal growth, and economic productivity of individuals.[55]

Childhood malnutrition is common and contributes to the global burden of disease.[56] Childhood is a particularly important time to achieve good nutrition status, because poor nutrition has the capability to lock a child in a vicious cycle of disease susceptibility and recurring sickness, which threatens cognitive and social development.[1] Undernutrition and bias in access to food and health services leaves children less likely to attend or perform well in school.[1]


UNICEF defines undernutrition “as the outcome of insufficient food intake (hunger) and repeated infectious diseases. Under nutrition includes being underweight for one’s age, too short for one’s age (stunted), dangerously thin (wasted), and deficient in vitamins and minerals (micronutrient malnutrient).[1] Under nutrition causes 53% of deaths of children under five across the world.[1] It has been estimated that undernutrition is the underlying cause for 35% of child deaths.[57] The Maternal and Child Nutrition Study Group estimate that under nutrition, “including fetal growth restriction, stunting, wasting, deficiencies of vitamin A and zinc along with suboptimum breastfeeding- is a cause of 3.1 million child deaths and infant mortality, or 45% of all child deaths in 2011”.[55]

When humans are undernourished, they no longer maintain normal bodily functions, such as growth, resistance to infection, or have satisfactory performance in school or work.[1] Major causes of under nutrition in young children include lack of proper breast feeding for infants and illnesses such as diarrhea, pneumonia, malaria, and HIV/AIDS.[1] According to UNICEF 146 million children across the globe, that one out of four under the age of five, are underweight.[1] The amount of underweight children has decreased since 1990, from 33 percent to 28 percent between 1990 and 2004.[1] Underweight and stunted children are more susceptible to infection, more likely to fall behind in school, more likely to become overweight and develop non-infectious diseases, and ultimately earn less than their non-stunted coworkers.[58] Therefore, undernutrition can accumulate deficiencies in health which results in less productive individuals and societies [1]

Many children are born with the inherent disadvantage of low birth weight, often caused by intrauterine growth restriction and poor maternal nutrition, which results in worse growth, development, and health throughout the course of their lifetime.[50] Children born at low birthweight (less than 5.5 pounds or 2.5 kg), are less likely to be healthy and are more susceptible to disease and early death.[1] Those born at low birthweight also are likely to have a depressed immune system, which can increase their chances of heart disease and diabetes later on in life.[1] Because 96% of low birthweight occurs in the developing world, low birthweight is associated with being born to a mother in poverty with poor nutritional status that has had to perform demanding labor.[1]

Stunting and other forms of undernutrition reduces a child’s chance of survival and hinders their optimal growth and health.[58] Stunting has demonstrated association with poor brain development, which reduces cognitive ability, academic performance, and eventually earning potential.[58] Important determinants of stunting include the quality and frequency of infant and child feeding, infectious disease susceptibility, and the mother’s nutrition and health status.[58] Undernourished mothers are more likely to birth stunted children, perpetuating a cycle of undernutrition and poverty.[58] Stunted children are more likely to develop obesity and chronic diseases upon reaching adulthood.[58] Therefore, malnutrition resulting in stunting can further worsen the obesity epidemic, especially in low and middle income countries.[58] This creates even new economic and social challenges for vulnerable impoverished groups.[58]

Data on global and regional food supply shows that consumption rose from 2011-2012 in all regions. Diets became more diverse, with a decrease in consumption of cereals and roots and an increase in fruits, vegetables, and meat products.[59] However, this increase masks the discrepancies between nations, where Africa, in particular, saw a decrease in food consumption over the same years.[59] This information is derived from food balance sheets that reflect national food supplies, however, this does not necessarily reflect the distribution of micro and macronutrients.[59] Often inequality in food access leaves distribution which uneven, resulting in undernourishment for some and obesity for others.[59]

Undernourishment, or hunger, according to the FAO, is dietary intake below the minimum daily energy requirement.[59] The amount of undernourishment is calculated utilizing the average amount of food available for consumption, the size of the population, the relative disparities in access to the food, and the minimum calories required for each individual.[59] According to FAO, 868 million people (12% of the global population) were undernourished in 2012.[59] This has decreased across the world since 1990, in all regions except for Africa, where undernourishment has steadily increased.[59] However, the rates of decrease are not sufficient to meet the first Millennium Development Goal of halving hunger between 1990 and 2015.[59] The global financial, economic, and food price crisis in 2008 drove many people to hunger, especially women and children. The spike in food prices prevented many people from escaping poverty, because the poor spend a larger proportion of their income on food and farmers are net consumers of food.[60] High food prices cause consumers to have less purchasing power and to substitute more-nutritious foods with low-cost alternatives.[61]

Adult overweight and obesity

Malnutrition in industrialized nations is primarily due to excess calories and non-nutritious carbohydrates, which has contributed to the obesity epidemic affecting both developed and some developing nations.[62] In 2008, 35% of adults above the age of 20 years were overweight (BMI 25 kg/m2), a prevalence that has doubled worldwide between 1980 and 2008.[63] Also 10% of men and 14% of women were obese, with a BMI greater than 30.[64] Rates of overweight and obesity vary across the globe, with the highest prevalence in the Americas, followed by European nations, where over 50% of the population is overweight or obese.[64]

Obesity is more prevalent amongst high income and higher middle income groups than lower divisions of income.[64] Women are more likely than men to be obese, where the rate of obesity in women doubled from 8% to 14% between 1980 and 2008.[64] Being overweight as a child has become an increasingly important indicator for later development of obesity and non-infectious diseases such as heart disease.[55] In several western European nations, the prevalence of overweight and obese children rose by 10% from 1980 to 1990, a rate that has begun to accelerate recently.[1]

Vitamin and mineral malnutrition

Vitamins and minerals are essential to the proper functioning and maintenance of the human body.[65] Globally, particularly in developing nations, deficiencies in iodine, iron, and zinc among others are said to impair human health when these minerals are not ingested in an adequate quantity. There are 20 trace elements and minerals that are essential in small quantities to body function and overall human health.[65]

Iron deficiency is the most common inadequate nutrient worldwide, affecting approximately 2 billion people.[66] Globally, anemia affects 1.6 billion people, and represents a public health emergency in mothers and children under five.[67] The World Health Organization estimates that there exists 469 million women of reproductive age and approximately 600 million preschool and school-age children worldwide who are anemic.[68] Anemia, especially iron-deficient anemia, is a critical problem for cognitive developments in children, and its presence leads to maternal deaths and poor brain and motor development in children.[1] The development of anemia affects mothers and children more because infants and children have higher iron requirements for growth.[69] Health consequences for iron deficiency in young children include increased perinatal mortality, delayed mental and physical development, negative behavioral consequences, reduced auditory and visual function, and impaired physical performance.[70] The harm caused by iron deficiency during child development cannot be reversed and result in reduced academic performance, poor physical work capacity, and decreased productivity in adulthood.[2] Mothers are also very susceptible to iron-deficient anemia because women lose iron during menstruation, and rarely supplement it in their diet.[2] Maternal iron deficiency anemia increases the chances of maternal mortality, contributing to at least 18% of maternal deaths in low and middle income countries.[71]

Vitamin A plays an essential role in developing the immune system in children, therefore, it is considered an essential micronutrient that can greatly affect health.[1] However, because of the expense of testing for deficiencies, many developing nations have not been able to fully detect and address vitamin A deficiency, leaving vitamin A deficiency considered a silent hunger.[1] According to estimates, subclinical vitamin A deficiency, characterized by low retinol levels, affects 190 million pre-school children and 19 million mothers worldwide.[72] The WHO estimates that 5.2 million of these children under 5 are affected by night blindness, which is considered clinical vitamin A deficiency.[73] Severe vitamin A deficiency (VAD) for developing children can result in visual impairments, anemia and weakened immunity, and increase their risk of morbidity and mortality from infectious disease.[74] This also presents a problem for women, with WHO estimating that 9.8 million women are affected by night blindness.[75] Clinical vitamin A deficiency is particularly common among pregnant women, with prevalence rates as high as 9.8% in South-East Asia.[72]

Estimates say that 28.5% of the global population is iodine deficient, representing 1.88 billion individuals.[76] Although salt iodization programs have reduced the prevalence of iodine deficiency, this is still a public health concern in 32 nations. Moderate deficiencies are common in Europe and Africa, and over consumption is common in the Americas.[50] Iodine-deficient diets can interfere with adequate thyroid hormone production, which is responsible for normal growth in the brain and nervous system. This ultimately leads to poor school performance and impaired intellectual capabilities.[1]

Infant and young child feeding

Improvement of breast feeding practices, like early initiation and exclusive breast feeding for the first two years of life, could save the lives of 1.5 million children annually.[77] Nutrition interventions targeted at infants aged 0–5 months first encourages early initiation of breastfeeding.[2] Though the relationship between early initiation of breast feeding and improved health outcomes has not been formally established, a recent study in Ghana suggests a causal relationship between early initiation and reduced infection-caused neo-natal deaths.[2] Also, experts promote exclusive breastfeeding, rather than using formula, which has shown to promote optimal growth, development, and health of infants.[78] Exclusive breastfeeding often indicates nutritional status because infants that consume breast milk are more likely to receive all adequate nourishment and nutrients that will aid their developing body and immune system. This leaves children less likely to contract diarrheal diseases and respiratory infections.[1]

Besides the quality and frequency of breastfeeding, the nutritional status of mothers affects infant health. When mothers do not receive proper nutrition, it threatens the wellness and potential of their children.[1] Well-nourished women are less likely to experience risks of birth and are more likely to deliver children who will develop well physically and mentally.[1] Maternal undernutrition increases the chances of low-birth weight, which can increase the risk of infections and asphyxia in fetuses, increasing the probability of neonatal deaths.[79] Growth failure during intrauterine conditions, associated with improper mother nutrition, can contribute to lifelong health complications.[2] Approximately 13 million children are born with intrauterine growth restriction annually.[80]

Anorexia nervosa

The lifetime prevalence of anorexia nervosa in women is 0.9%, with 19 years as the average age of onset. Although relatively uncommon, eating disorders can negatively affect menstruation, fertility, and maternal and fetal well-being. Among infertile women suffering from amenorrhea or oligomenorrhea due to eating disorders, 58% had menstrual irregularities, according to preliminary research in 1990.[81]

International food insecurity and malnutrition

According to UNICEF, South Asia has the highest levels of underweight children under five, followed by sub-Saharan Africans nations, with Industrialized countries and Latin nations having the lowest rates.[1]

United States

In the United States, 2% of children are underweight, with under 1% stunted and 6% are wasting.[1]

In the US, dietitians are registered (RD) or licensed (LD) with the Commission for Dietetic Registration and the American Dietetic Association, and are only able to use the title "dietitian," as described by the business and professions codes of each respective state, when they have met specific educational and experiential prerequisites and passed a national registration or licensure examination, respectively. Anyone may call themselves a nutritionist, including unqualified dietitians, as this term is unregulated. Some states, such as the State of Florida, have begun to include the title "nutritionist" in state licensure requirements. Most governments provide guidance on nutrition, and some also impose mandatory disclosure/labeling requirements for processed food manufacturers and restaurants to assist consumers in complying with such guidance.

In the US, nutritional standards and recommendations are established jointly by the US Department of Agriculture and US Department of Health and Human Services. Dietary and physical activity guidelines from the USDA are presented in the concept of a plate of food which in 2011 superseded the MyPyramid food pyramid that had replaced the Four Food Groups. The Senate committee currently responsible for oversight of the USDA is the Agriculture, Nutrition and Forestry Committee. Committee hearings are often televised on C-SPAN. The U.S. Department of Health and Human Services provides a sample week-long menu which fulfills the nutritional recommendations of the government.[82] Canada's Food Guide is another governmental recommendation.

Industrialized countries

According to UNICEF, the Commonwealth of Independent States has the lowest rates of stunting and wasting, at 14 percent and 3 percent.[1] The nations of Estonia, Finland, Iceland, Lithuania and Sweden have the lowest prevalence of low birthweight children in the world- at 4%.[1] Proper prenatal nutrition is responsible for this small prevalence of low birthweight infants.[1] However, low birthweight rates are increasing, due to the use of fertility drugs, resulting in multiple births, women bearing children at an older age, and the advancement of technology allowing more pre-term infants to survive.[1] Industrialized nations more often face malnutrition in the form of over-nutrition from excess calories and non-nutritious carbohydrates, which has contributed greatly to the public health epidemic of obesity.[62] Disparities, according to gender, geographic location and socio-economic position, both within and between countries, represent the biggest threat to child nutrition in industrialized countries. These disparities are a direct product of social inequalities and social inequalities are rising throughout the industrialized world, particularly in Europe.[1]

South Asia

South Asia has the highest percentage and number of underweight children under five in the world, at approximately 78 million children.[1] Patterns of stunting and wasting are similar, where 44% have not reached optimal height and 15% are wasted, rates much higher than any other regions.[1] This region of the world has extremely high rates of underweight children. According to a 2006 Unicef study, 46% of its child population under five is underweight.[1] The same study indicates India, Bangladesh, and Pakistan combined account for half the globe’s underweight child population.[1] South Asian nations have made progress towards the MDGs, considering the rate has decreased from 53% since 1990, however, a 1.7% decrease of underweight prevalence per year will not be sufficient to meet the 2015 goal.[1] Some nations, such as Afghanistan, Bangladesh, and Sri Lanka, on the other hand, have made significant improvements, all decreasing their prevalence by half in ten years.[1] While India and Pakistan have made modest improvements, Nepal has made no significant improvement in underweight child prevalence.[1] Other forms of undernutrition have continued to persist with high resistance to improvement, such as the prevalence of stunting and wasting, which has not changed significantly in the past 10 years.[1] Causes of this poor nutrition include energy-insufficient diets, poor sanitation conditions, and the gender disparities in educational and social status.[1] Girls and women face discrimination especially in nutrition status, where South Asia is the only region in the world where girls are more likely to be underweight than boys.[1] In South Asia, 60% of children in the lowest quintile are underweight, compared to only 26% in the highest quintile, and the rate of reduction of underweight is slower amongst the poorest.[83]

Eastern/South Africa

The Eastern and Southern African nations have shown no improvement since 1990 in the rate of underweight children under five.[1] They have also made no progress in halving hunger by 2015, the most prevalent Millennium Development Goal.[1] This is due primarily to the prevalence of famine, declined agricultural productivity, food emergencies, drought, conflict, and increased poverty.[1] This, along with HIV/AIDS, has inhibited the nutrition development of nations such as Lesotho, Malawi, Mozambique, Swaziland, Zambia and Zimbabwe.[1] Botswana has made remarkable achievements in reducing underweight prevalence, dropping 4% in 4 years, despite its place as the second leader in HIV prevalence amongst adults in the globe.[1] South Africa, the wealthiest nation in this region, has the second lowest proportion of underweight children at 12%, but has been steadily increasing in underweight prevalence since 1995.[1] Almost half of Ethiopian children are underweight, and along with Nigeria, they account for almost one-third of the underweight under five in all of Sub-Saharan Africa.[1]

West/Central Africa

West/Central Africa has the highest rate of children under five underweight in the world.[1] Of the countries in this region, the Congo has the lowest rate at 14%, while the nations of Democratic Republic of the Congo, Ghana, Guinea, Mali, Nigeria, Senegal and Togo are improving slowly.[1] In Gambia, rates decreased from 26% to 17% in four years, and their coverage of vitamin A supplementation reaches 91% of vulnerable populations.[1] This region has the next highest proportion of wasted children, with 10% of the population under five not at optimal weight.[1] Little improvement has been made between the years of 1990 and 2004 in reducing the rates of underweight children under five, whose rate stayed approximately the same.[1] Sierra Leone has the highest child under five mortality rate in the world, due predominantly to its extreme infant mortality rate, at 238 deaths per 1000 live births.[1] Other contributing factors include the high rate of low birthweight children (23%) and low levels of exclusive breast feeding (4%).[1] Anemia is prevalent in these nations, with unacceptable rates of iron deficient anemia.[1] The nutritional status of children is further indicated by its high rate of child wasting - 10%.[1] Wasting is a significant problem in Sahelian countries – Burkina Faso, Chad, Mali, Mauritania and Niger – where rates fall between 11% and 19% of under fives, affecting more than 1 million children.[1]

Middle East/North Africa

Six countries in the Middle East and North Africa region are on target to meet goals for reducing underweight children by 2015, and 12 countries have prevalence rates below 10%.[1] However, the nutrition of children in the region as a whole has degraded for the past ten years due to the increasing portion of underweight children in three populous nations – Iraq, Sudan, and Yemen.[1] Forty six percent of all children in Yemen are underweight, a percentage that has worsened by 4% since 1990.[1] In Yemen, 53% of children under five are stunted and 32% are born at low birth weight.[1] Sudan has an underweight prevalence of 41%, and the highest proportion of wasted children in the region at 16%.[1] One percent of households in Sudan consume iodized salt.[1] Iraq has also seen an increase in child underweight since 1990.[1] Djibouti, Jordan, the Occupied Palestinian Territory (OPT), Oman, the Syrian Arab Republic and Tunisia are all projected to meet minimum nutrition goals, with OPT, Syrian AR, and Tunisia the fastest improving regions.[1] This region demonstrates that undernutrition does not always improve with economic prosperity, where the United Arab Emirates, for example, despite being a wealthy nation, has similar child death rates due to malnutrition to those seen in Yemen.[1]

East Asia/Pacific

The East Asia/Pacific region has reached its goals on nutrition, in part due to the improvements contributed by China, the region’s most populous country.[1] China has reduced its underweight prevalence from 19 percent to 8 percent between 1990 and 2002.[1] China played the largest role in the world in decreasing the rate of children under five underweight between 1990 and 2004, halving the prevalence.[1] This reduction of underweight prevalence has aided in the lowering of the under 5 mortality rate from 49 to 31 of 1000. They also have a low birthweight rate at 4%, a rate comparable to industrialized countries, and over 90% of households receive adequate iodized salts.[1] However, large disparities exist between children in rural and urban areas, where 5 provinces in China leave 1.5 million children iodine deficient and susceptible to diseases.[1] Singapore, Vietnam, Malaysia, and Indonesia are all projected to reach nutrition MDGs.[1] Singapore has the lowest under five mortality rate of any nation, besides Iceland, in the world, at 3%.[1] Cambodia has the highest rate of child mortality in the region (141 per 1,000 live births), while still its proportion of underweight children increased by 5 percent to 45% in 2000. Further nutrient indicators show that only 12 per cent of Cambodian babies are exclusively breastfed and only 14 per cent of households consume iodized salt.[1]

Latin America/Caribbean

This region has undergone the fastest progress in decreasing poor nutrition status of children in the world.[1] The Latin American region has reduced underweight children prevalence by 3.8% every year between 1990 and 2004, with a current rate of 7% underweight.[1] They also have the lowest rate of child mortality in the developing world, with only 31 per 1000 deaths, and the highest iodine consumption.[1] Cuba has seen improvement from 9 to 4 percent underweight under 5 between 1996 and 2004.[1] The prevalence has also decreased in the Dominican Republic, Jamaica, Peru, and Chile.[1] Chile has a rate of underweight under 5, at merely 1%.[1] The most populous nations, Brazil and Mexico, mostly have relatively low rates of underweight under 5, with only 6% and 8%.[1] Guatemala has the highest percentage of underweight and stunted children in the region, with rates above 45%.[1] There are disparities amongst different populations in this region. For example, children in rural areas have twice the prevalence of underweight at 13%, compared to urban areas at 5%.[1]

Nutrition access disparities

Occurring throughout the world, lack of proper nutrition is both a consequence and cause of poverty.[1] Impoverished individuals are less likely to have access to nutritious food and to escape from poverty than those who have healthy diets.[1] Disparities in socioeconomic status, both between and within nations, provide the largest threat to child nutrition in industrialized nations, where social inequality is on the rise.[84] According to UNICEF, children living in the poorest households are twice as likely to be underweight as those in the richest.[1] Those in the lowest wealth quintile and whose mothers have the least education demonstrate the highest rates of child mortality and stunting.[85] Throughout the developing world, socioeconomic inequality in childhood malnutrition is more severe than in upper income brackets, regardless of the general rate of malnutrition.[86] According to UNICEF, children in rural locations are more than twice as likely to be underweight as compared to children under five in urban areas.[1] In Latin American/Caribbean nations, “Children living in rural areas in Bolivia, Honduras, Mexico and Nicaragua are more than twice as likely to be underweight as children living in urban areas. That likelihood doubles to four times in Peru.” Concurrently, the greatest increase in childhood obesity has been seen in the lower middle income bracket.[64]

In the United States, the incidence of low birthweight is on the rise among all populations, but particularly among minorities.[87]

According to UNICEF, boys and girls have almost identical rates as underweight children under age 5 across the world, except in South Asia.[1]

Nutrition policy

Nutrition interventions

Nutrition directly influences progress towards meeting the Millennium Goals of eradicating hunger and poverty through health and education.[1] Therefore, nutrition interventions take a multi-faceted approach to improve the nutrition status of various populations. Policy and programming must target both individual behavioral changes and policy approaches to public health. While most nutrition interventions focus on delivery through the health-sector, non-health sector interventions targeting agriculture, water and sanitation, and education are important as well.[2] Global nutrition micro-nutrient deficiencies often receive large-scale solution approaches by deploying large governmental and non-governmental organizations. For example, in 1990, iodine deficiency was particularly prevalent, with one in five households, or 1.7 billion people, not consuming adequate iodine, leaving them at risk to develop associated diseases.[1] Therefore, a global campaign to iodize salt to eliminate iodine deficiency successfully boosted the rate to 69% of households in the world consuming adequate amounts of iodine.[1]

Emergencies and crises often exacerbate undernutrition, due to the aftermath of crises that include food insecurity, poor health resources, unhealthy environments, and poor healthcare practices.[1] Therefore, the repercussions of natural disasters and other emergencies can exponentially increase the rates of macro and micronutrient deficiencies in populations.[1] Disaster relief interventions often take a multi-faceted public health approach. UNICEF’s programming targeting nutrition services amongst disaster settings include nutrition assessments, measles immunization, vitamin A supplementation, provision of fortified foods and micronutrient supplements, support for breastfeeding and complementary feeding for infants and young children, and therapeutic and supplementary feeding.[1] For example, during Nigeria’s food crisis of 2005, 300,000 children received therapeutic nutrition feeding programs through the collaboration of UNICEF, the Niger government, the World Food Programme, and 24 NGOs utilizing community and facility based feeding schemes.[1]

Interventions aimed at pregnant women, infants, and children take a behavioral and program-based approach. Behavioral intervention objectives include promoting proper breast-feeding, the immediate initiation of breastfeeding, and its continuation through 2 years and beyond.[2] UNICEF recognizes that to promote these behaviors, healthful environments must be established conducive to promoting these behaviors, like healthy hospital environments, skilled health workers, support in the public and workplace, and removing negative influences.[2] Finally, other interventions include provisions of adequate micro and macro nutrients such as iron, anemia, and vitamin A supplements and vitamin-fortified foods and ready-to-use products.[2] Programs addressing micro-nutrient deficiencies, such as those aimed at anemia, have attempted to provide iron supplementation to pregnant and lactating women. However, because supplementation often occurs too late, these programs have had little effect.[1] Interventions such as women’s nutrition, early and exclusive breastfeeding, appropriate complementary food and micronutrient supplementation have proven to reduce stunting and other manifestations of undernutrition.[58] A Cochrane review of community-based maternal health packages showed that this community-based approach improved the initiation of breastfeeding within one hour of birth.[88] Some programs have had adverse effects. One example is the “Formula for Oil” relief program in Iraq, which resulted in the replacement of breastfeeding for formula, which has negatively affected infant nutrition.[1]

Implementation and delivery platforms

In April 2010, the World Bank and the IMF released a policy briefing entitled “Scaling up Nutrition (SUN): A Framework for action” that represented a partnered effort to address the Lancet’s Series on under nutrition, and the goals it set out for improving under nutrition.[89] They emphasized the 1000 days after birth as the prime window for effective nutrition intervention, encouraging programming that was cost-effective and showed significant cognitive improvement in populations, as well as enhanced productivity and economic growth.[89] This document was labeled the SUN framework, and was launched by the UN General Assembly in 2010 as a road map encouraging the coherence of stakeholders like governments, academia, UN system organizations and foundations in working towards reducing under nutrition.[89] The SUN framework has initiated a transformation in global nutrition- calling for country-based nutrition programs, increasing evidence based and cost–effective interventions, and “integrating nutrition within national strategies for gender equality, agriculture, food security, social protection, education, water supply, sanitation, and health care”.[89] Government often plays a role in implementing nutrition programs through policy. For instance, several East Asian nations have enacted legislation to increase iodization of salt to increase household consumption.[1] Political commitment in the form of evidence-based effective national policies and programs, trained skilled community nutrition workers, and effective communication and advocacy can all work to decrease malnutrition.[58] Market and industrial production can play a role as well. For example, in the Philippines, improved production and market availability of iodized salt increased household consumption.[1] While most nutrition interventions are delivered directly through governments and health services, other sectors, such as agriculture, water and sanitation, and education, are vital for nutrition promotion as well.[2]

Nutrition Education

Nutrition is taught in schools in many countries. In England and Wales the Personal and Social Education and Food Technology curricula include nutrition, stressing the importance of a balanced diet and teaching how to read nutrition labels on packaging. In many schools a Nutrition class will fall within the Family and Consumer Science or Health departments. In some American schools, students are required to take a certain number of FCS or Health related classes. Nutrition is offered at many schools, and if it is not a class of its own, nutrition is included in other FCS or Health classes such as: Life Skills, Independent Living, Single Survival, Freshmen Connection, Health etc. In many Nutrition classes, students learn about the food groups, the food pyramid, Daily Recommended Allowances, calories, vitamins, minerals, malnutrition, physical activity, healthy food choices and how to live a healthy life.

A 1985 US National Research Council report entitled Nutrition Education in US Medical Schools concluded that nutrition education in medical schools was inadequate.[90] Only 20% of the schools surveyed taught nutrition as a separate, required course. A 2006 survey found that this number had risen to 30%.[91]

Nutrition for special populations

Sports nutrition


The protein requirement for each individual differs, as do opinions about whether and to what extent physically active people require more protein. The 2005 Recommended Dietary Allowances (RDA), aimed at the general healthy adult population, provide for an intake of 0.8 grams of protein per kilogram of body weight.[16] A review panel stating that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise."[92]


The main fuel used by the body during exercise is carbohydrates, which is stored in muscle as glycogen – a form of sugar. During exercise, muscle glycogen reserves can be used up, especially when activities last longer than 90 min.[93] Because the amount of glycogen stored in the body is limited, it is important for athletes participating in endurance sports such as marathons to consume carbohydrates during their events.

Maternal nutrition

Paediatric nutrition

Adequate nutrition is essential for the growth of children from infancy right through until adolescence. Some nutrients are specifically required for growth on top of nutrients required for normal body maintenance, in particular calcium and iron.[94]

Elderly nutrition

Malnutrition in general is higher among the elderly, but has different aspects in developed and undeveloped countries.[95]


Humans have evolved as omnivorous hunter-gatherers over the past 250,000 years. The diet of early modern humans varied significantly depending on location and climate. The diet in the tropics tended to depend more heavily on plant foods, while the diet at higher latitudes tended more towards animal products. Analyses of postcranial and cranial remains of humans and animals from the Neolithic, along with detailed bone-modification studies, have shown that cannibalism also occurred among prehistoric humans.[96]

Agriculture developed about 10,000 years ago in multiple locations throughout the world, providing grains (such as wheat, rice and maize) and potatoes; and originating staples such as bread and pasta dough,[97] and tortillas. Farming also provided milk and dairy products, and sharply increased the availability of meats and the diversity of vegetables. The importance of food purity was recognized when bulk storage led to infestation and contamination risks. Cooking developed as an often ritualistic activity,[98] due to efficiency and reliability concerns requiring adherence to strict recipes and procedures, and in response to demands for food purity and consistency.[99]

From antiquity to 1900


Around 3000 BC the Vedic texts made mention of scientific research on nutrition. The Bible's Book of Daniel recounts first recorded nutritional experiment. During an invasion of Judah, King Nebuchadnezzar of Babylon captured Daniel and his friends. Selected as court servants, they were to share in the king's fine foods and wine. But they objected, preferring vegetables (pulses) and water in accordance with their Jewish dietary restrictions. The king's chief steward reluctantly agreed to a trial. Daniel and his friends received their diet for 10 days. On comparison with the king's men, they appeared healthier, and were allowed to continue with their diet.[100] Around 475 BC, Anaxagoras stated that food is absorbed by the human body and therefore contained "homeomerics" (generative components), suggesting the existence of nutrients.[99]

The 16th-century scientist and artist Leonardo da Vinci (1452–1519) compared metabolism to a burning candle. In 1747 Dr. James Lind, a physician in the British navy, performed the first attested scientific nutrition experiment, discovering that lime juice saved sailors who had been at sea for years from scurvy, a deadly and painful bleeding disorder. The discovery was ignored for forty years, but after about 1850 British sailors became known as "limeys". (Scientists would not identify the essential vitamin C within lime juice until the 1930s.)

Around 1770 Antoine Lavoisier, the "Father of Nutrition and Chemistry", discovered the details of metabolism, demonstrating that the oxidation of food is the source of body heat. In 1790 George Fordyce recognized calcium as necessary for fowl survival. In the early 19th century, the elements carbon, nitrogen, hydrogen and oxygen were recognized as the primary components of food, and methods to measure their proportions were developed.

In 1816 François Magendie discovered that dogs fed only carbohydrates and fat lost their body protein and died in a few weeks, but dogs also fed protein survived, identifying protein as an essential dietary component. In 1840, Justus Liebig discovered the chemical makeup of carbohydrates (sugars), fats (fatty acids) and proteins (amino acids). In the 1860s Claude Bernard discovered that body fat can be synthesized from carbohydrate and protein, showing that the energy in blood glucose can be stored as fat or as glycogen. In the early 1880s Kanehiro Takaki observed that Japanese sailors (whose diets consisted almost entirely of white rice) developed beriberi (or endemic neuritis, a disease causing heart problems and paralysis), but British sailors and Japanese naval officers did not. Adding various types of vegetables and meats to the diets of Japanese sailors prevented the disease.

In 1896 Eugen Baumann observed iodine in thyroid glands. In 1897, Christiaan Eijkman worked with natives of Java, who also suffered from beriberi. Eijkman observed that chickens fed the native diet of white rice developed the symptoms of beriberi, but remained healthy when fed unprocessed brown rice with the outer bran intact. Eijkman cured the natives by feeding them brown rice, demonstrating that food can cure disease. Over two decades later, nutritionists learned that the outer rice bran contains vitamin B.

From 1900 to the present

In the early 20th century Carl von Voit and Max Rubner independently measured caloric energy expenditure in different species of animals, applying principles of physics in nutrition. In 1906, Wilcock and Hopkins showed that the amino acid tryptophan was necessary for the survival of rats. He fed them a special mixture of food containing all the nutrients he believed were essential for survival, but the rats died. A second group of rats to which he also fed an amount of milk containing vitamins.[101] Gowland Hopkins recognized "accessory food factors" other than calories, protein and minerals, as organic materials essential to health but which the body cannot synthesize. In 1907 Stephen M. Babcock and Edwin B. Hart conducted the single-grain experiment. This experiment ran through 1911.

In 1912 Casimir Funk coined the term vitamin to label a vital factor in the diet: from the words "vital" and "amine," because these unknown substances preventing scurvy, beriberi, and pellagra, were thought then to derive from ammonia. The vitamins were studied in the first half of the 20th century. In 1913 Elmer McCollum discovered the first vitamins, fat-soluble vitamin A and water-soluble vitamin B (in 1915; later identified as a complex of several water-soluble vitamins) and named vitamin C as the then-unknown substance preventing scurvy. Lafayette Mendel (1872-1935) and Thomas Osborne (1859–1929) also performed pioneering work on vitamins A and B. In 1919 Sir Edward Mellanby incorrectly identified rickets as a vitamin A deficiency, because he could cure it in dogs with cod-liver oil.[102] In 1922 McCollum destroyed the vitamin A in cod liver oil but found it still cured rickets, thus identifying vitamin D. Also in 1922, H.M. Evans and L.S. Bishop discovered vitamin E as essential for rat pregnancy, and originally called it "food factor X" until 1925.

In 1925 Hart discovered that iron absorption requires trace amounts of copper. In 1927 Adolf Otto Reinhold Windaus synthesized vitamin D, for which he won the Nobel Prize in Chemistry in 1928. In 1928 Albert Szent-Györgyi isolated ascorbic acid, and in 1932 proved that it is vitamin C by preventing scurvy. In 1935 he synthesized it, and in 1937 won a Nobel Prize for his efforts. Szent-Györgyi concurrently elucidated much of the citric acid cycle. In the 1930s William Cumming Rose identified essential amino acids, necessary protein components which the body cannot synthesize. In 1935 Eric Underwood and Hedley Marston independently discovered the necessity of cobalt. In 1936 Eugene Floyd Dubois showed that work and school performance relate to caloric intake. In 1938 Erhard Fernholz discovered the chemical structure of vitamin E. It was synthesised by Paul Karrer (1889–1971).

From 1940 rationing in the United Kingdom – during and after World War II – took place according to nutritional principles drawn up by Elsie Widdowson and others. In 1941 the National Research Council established the first Recommended Dietary Allowances (RDAs). In 1992 the U.S. Department of Agriculture introduced the Food Guide Pyramid. In 2002 a Natural Justice study showed a relation between nutrition and violent behavior.

See also

Further reading

  • Mahan, L.K.; Escott-Stump, S., eds. (2000). Krause's Food, Nutrition, and Diet Therapy (10th ed.). Philadelphia: W.B. Saunders Harcourt Brace. ISBN 978-0-7216-7904-4.
  • Human Nutrition. Readings from Scientific American. San Francisco: W.H. Freeman & Co. 1978. ISBN 978-0-7167-0183-5.
  • Thiollet, J.-P. (2001). Vitamines & minéraux. Paris: Anagramme.
  • Willett WC, Stampfer MJ (January 2003). "Rebuilding the food pyramid". Scientific American. 288 (1): 64–71. Bibcode:2003SciAm.288a..64W. doi:10.1038/scientificamerican0103-64. PMID 12506426.


  1. Progress for Children: A Report Card on Nutrition (No. 4), UNICEF, May 2006, ISBN 978-92-806-3988-9 /nutrition/index_33685.html
  2. World Health Organization. (2013). Essential Nutrition Actions: Improving maternal, newborn, infant and young child health and nutrition. Washington, DC: WHO.
  3. Lean, Michael E.J. (2015). "Principles of Human Nutrition". Medicine. 43 (2): 61–65. doi:10.1016/j.mpmed.2014.11.009. Retrieved March 31, 2015.
  4. World Health Organization, Food and Agricultural Organization of the United Nations (2004). Vitamin and mineral requirements in human nutrition (2. ed.). Geneva [u.a.]: World Health Organization. ISBN 978-9241546126.
  5. Berg J, Tymoczko JL, Stryer L (2002). Biochemistry (5th ed.). San Francisco: W.H. Freeman. p. 603. ISBN 978-0-7167-4684-3.
  6. "National Nutrition Survey: Nutrient Intakes and Physical Measurements". Australian Bureau of Statistics. 1995.
  7. Nelson DL, Cox MM (2005). Lehninger's Principles of Biochemistry (4th ed.). New York, New York: W. H. Freeman and Company.
  8. Cummings JH, Stephen AM (December 2007). "Carbohydrate terminology and classification" (PDF). European Journal of Clinical Nutrition. 61 Suppl 1: S5–18. doi:10.1038/sj.ejcn.1602936. PMID 17992187.
  9. "Grams of Carbohydrates in White Bread - Carb Counter". Retrieved 2016-03-18.
  10. "American Rice, Inc". Retrieved 2016-03-18.
  11. Westman EC (May 2002). "Is dietary carbohydrate essential for human nutrition?". The American Journal of Clinical Nutrition. 75 (5): 951–3, author reply 953–4. doi:10.1093/ajcn/75.5.951a. PMID 11976176.
  12. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (October 2013). "Sugar for the brain: the role of glucose in physiological and pathological brain function". Trends in Neurosciences. 36 (10): 587–97. doi:10.1016/j.tins.2013.07.001. PMC 3900881. PMID 23968694.
  13. Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni Di Bonaventura MV, Gaetani S, Giudetti AM (March 2017). "Fats for thoughts: An update on brain fatty acid metabolism". The International Journal of Biochemistry & Cell Biology. 84: 40–45. doi:10.1016/j.biocel.2016.12.015. PMID 28065757.
  14. "Carbohydrates That Contain Monosaccharides". Healthy eating.
  15. Lean, Michael E.J. (2015). "Principles of human nutrition". Medicine. 43 (2): 61–65. doi:10.1016/j.mpmed.2014.11.009.
  16. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements, published by the Institute of Medicine's Food and Nutrition Board, currently available online at "Archived copy". Archived from the original on 2014-07-05. Retrieved 2014-07-14.CS1 maint: archived copy as title (link)
  17. Alexandrov NV, Eelderink C, Singh-Povel CM, Navis GJ, Bakker SJ, Corpeleijn E (October 2018). "Dietary Protein Sources and Muscle Mass over the Life Course: The Lifelines Cohort Study". Nutrients. 10 (10): 1471. doi:10.3390/nu10101471. PMC 6212815. PMID 30308987.
  18. "Protein". The Nutrition Source. 2012-09-18. Retrieved 2019-10-31.
  19. Rogerson D (2017-09-13). "Vegan diets: practical advice for athletes and exercisers". Journal of the International Society of Sports Nutrition. 14: 36. doi:10.1186/s12970-017-0192-9. PMC 5598028. PMID 28924423.
  20. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F (November 2017). "Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies" (PDF). Critical Reviews in Food Science and Nutrition. 57 (17): 3640–3649. doi:10.1080/10408398.2016.1138447. hdl:2158/1079985. PMID 26853923.
  21. Publishing, Harvard Health. "Precious metals and other important minerals for health". Harvard Health. Retrieved 2019-10-31.
  22. "Minerals: Their Functions and Sources | Michigan Medicine". Retrieved 2019-10-31.
  23. "Office of Dietary Supplements - Calcium". Retrieved 2019-10-31.
  24. L. Kathleen Mahan; Janice L. Raymond; Sylvia Escott-Stump (2012). Krausw's Food and the Nutrition Care Process (13th ed.). St. Louis: Elsevier. ISBN 978-1-4377-2233-8.
  25. USDA National Nutrient Database for Standard Reference, SR26, 2013
  26. D. E. C. Corbridge (1995). Phosphorus: An Outline of its Chemistry, Biochemistry, and Technology (5th ed.). Amsterdam: Elsevier. ISBN 978-0-444-89307-9.
  27. "Overview of Disorders of Phosphate Concentration - Endocrine and Metabolic Disorders". MSD Manual Professional Edition. Retrieved 2019-10-31.
  28. Lippard, S. J.; Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books. ISBN 978-0-935702-73-6.
  29. Kapil U (December 2007). "Health consequences of iodine deficiency". Sultan Qaboos University Medical Journal. 7 (3): 267–72. PMC 3074887. PMID 21748117.
  30. Zava TT, Zava DT (October 2011). "Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis". Thyroid Research. 4 (1): 14. doi:10.1186/1756-6614-4-14. PMC 3204293. PMID 21975053.
  31. Yeh TS, Hung NH, Lin TC (2014-06-01). "Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake". Journal of Food and Drug Analysis. 22 (2): 189–196. doi:10.1016/j.jfda.2014.01.014. ISSN 1021-9498.
  32. Nielsen, Forrest H. (1998). "Ultratrace elements in nutrition: Current knowledge and speculation". The Journal of Trace Elements in Experimental Medicine. 11 (2–3): 251–274. doi:10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q. ISSN 1520-670X.
  33. Nielsen FH (September 1996). "How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential?". The Journal of Nutrition. 126 (9 Suppl): 2377S–2385S. doi:10.1093/jn/126.suppl_9.2377S. PMID 8811801.
  34. Shils (2005). Modern Nutrition in Health and Disease. Lippincott Williams and Wilkins. ISBN 978-0-7817-4133-0.
  35. Berardi, John. "The Big T: How Your Lifestyle Influences Your Testosterone Levels". Archived from the original on 30 May 2012. Retrieved 8 October 2013.
  36. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. (October 2007). "European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts)" (PDF). European Heart Journal. 28 (19): 2375–414. doi:10.1093/eurheartj/ehm316. PMID 17726041.
  37. Behrman, J. R. (1996). "The Impact of Health and Nutrition on Education". The World Bank Research Observer. 11 (1): 23–37. doi:10.1093/wbro/11.1.23. JSTOR 3986477.
  38. American College Health Association (2007). "American College Health Association National College Health Assessment Spring 2006 Reference Group data report (abridged)". Journal of American College Health. 55 (4): 195–206. doi:10.3200/JACH.55.4.195-206. PMID 17319325.
  39. Benton D, Sargent J (July 1992). "Breakfast, blood glucose and memory". Biological Psychology. 33 (2–3): 207–10. doi:10.1016/0301-0511(92)90032-P. PMID 1525295.
  40. Kanarek RB, Swinney D (February 1990). "Effects of food snacks on cognitive performance in male college students". Appetite. 14 (1): 15–27. CiteSeerX doi:10.1016/0195-6663(90)90051-9. PMID 2310175.
  41. Whitley JR, O'Dell BL, Hogan AG (September 1951). "Effect of diet on maze learning in second generation rats; folic acid deficiency". The Journal of Nutrition. 45 (1): 153–60. doi:10.1093/jn/45.1.153. PMID 14880969.
  42. Umezawa M, Kogishi K, Tojo H, Yoshimura S, Seriu N, Ohta A, et al. (February 1999). "High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice". The Journal of Nutrition. 129 (2): 431–7. doi:10.1093/jn/129.2.431. PMID 10024623.
  43. Glewwe P, Jacoby HG, King EM (2001). "Early childhood nutrition and academic achievement: A longitudinal analysis". Journal of Public Economics. 81 (3): 345–68. CiteSeerX doi:10.1016/S0047-2727(00)00118-3.
  44. Guernsey L (1993). "Many colleges clear their tables of steak, substitute fruit and pasta". Chronicle of Higher Education. 39 (26): A30.
  45. Duster T, Waters A (2006). "Engaged learning across the curriculum: The vertical integration of food for thought". Liberal Education. 92 (2): 42.
  46. Lakhan SE, Vieira KF (January 2008). "Nutritional therapies for mental disorders". Nutrition Journal. 7 (1): 2. doi:10.1186/1475-2891-7-2. PMC 2248201. PMID 18208598.
  47. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. WCRF/AICR. 2007. ISBN 9780972252232.
  48. Fernández-García JC, Cardona F, Tinahones FJ (November 2013). "Inflammation, oxidative stress and metabolic syndrome: dietary modulation". Current Vascular Pharmacology. 11 (6): 906–19. doi:10.2174/15701611113116660175. PMID 24168441.
  49. Feldeisen SE, Tucker KL (February 2007). "Nutritional strategies in the prevention and treatment of metabolic syndrome". Applied Physiology, Nutrition, and Metabolism. 32 (1): 46–60. doi:10.1139/h06-101. PMID 17332784.
  50. WHO (2013). Global Nutrition Policy. Report of a WHO Expert Committee. Geneva, World Health Organization.
  51. "UNICEF 2012 Progress Report: Rapid progress in child survival". World Health Organization. 18 September 2012. Retrieved 28 May 2016.
  52. WHO. World health statistics 2013: a wealth of information on global public health. Geneva, WHO, 2013. pp. 5-7
  53. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. (June 2012). "Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000". Lancet. 379 (9832): 2151–61. doi:10.1016/S0140-6736(12)60560-1. PMID 22579125.
  54. UNICEF, WHO, World Bank. UNICEF-WHO-World Bank Joint child malnutrition estimates. New York, Geneva & Washington DC, UNICEF, WHO & World Bank, 2012 (, accessed 27 March 2013)
  55. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. (August 2013). "Maternal and child undernutrition and overweight in low-income and middle-income countries". Lancet. 382 (9890): 427–451. doi:10.1016/S0140-6736(13)60937-X. PMID 23746772.
  56. Murray CJ, Lopez AD (May 1997). "Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study". Lancet. 349 (9063): 1436–42. doi:10.1016/S0140-6736(96)07495-8. PMID 9164317.
  57. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. (January 2008). "Maternal and child undernutrition: global and regional exposures and health consequences". Lancet. 371 (9608): 243–60. doi:10.1016/s0140-6736(07)61690-0. PMID 18207566.
  58. IMPROVING CHILD NUTRITION > UNICEF. (April 2013). IMPROVING CHILD NUTRITION: The achievable imperative for global progress.
  59. FAO (2012). The state of food insecurity in the world 2012: Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, Food and Agricultural Organization of the United Nations. (Accessed 7 December 2012.).
  60. UNSCN (2009). Global financial and economic crisis – The most vulnerable are at increased risk of hunger and malnutrition. United Nations Standing Committee on Nutrition.
  61. IBRD, World Bank (2012). Global Monitoring Report 2012: Food prices, nutrition, and the Millennium Development Goals. International Bank for Reconstruction and Development (IBRD)/World Bank, Washington, DC..
  62. Darnton-Hill, Ian, C. Nishida and W.P.T. James, ‘A life course approach to diet, nutrition and the prevention of chronic diseases’, Public Health Nutrition, vol. 7, no. 1A, 2004, pp. 101–121.
  63. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. (February 2011). "National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants". Lancet. 377 (9765): 557–67. doi:10.1016/S0140-6736(10)62037-5. PMC 4472365. PMID 21295846.
  64. "WHO (2011a). Global status report on noncommunicable diseases 2010". Geneva, World Health Organization.
  65. Stein, A. J. (2010). "Global Impacts of Human Mineral Malnutrition". Plant and Soil. 335 (1/2): 133–154. doi:10.1007/s11104-009-0228-2.
  66. WHO. Iron deficiency anemia: assessment, prevention, and control. A guide for program managers. Geneva, WHO, 2001
  67. WHO (2001). Iron deficiency anemia: Assessment, prevention, and control. A guide for program managers. Geneva, World Health Organization.
  68. WHO, Centers for Disease Control. Worldwide prevalence of anemia 1993–2005: WHO global database of anemia. Geneva, WHO, 2008.
  69. W Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington DC, National Academy Press, 2001
  70. Algarín C, Peirano P, Garrido M, Pizarro F, Lozoff B (February 2003). "Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning". Pediatric Research. 53 (2): 217–23. doi:10.1203/01.PDR.0000047657.23156.55. PMID 12538778.
  71. "Global health risks - Mortality and burden of disease attributable to selected major risks". Geneva, WHO, 2009 ( accessed 31 July 2017).
  72. WHO (2009). Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency. Geneva, World Health Organization. "Archived copy" (PDF). Archived from the original (PDF) on 2015-09-23. Retrieved 2014-03-01.CS1 maint: archived copy as title (link)
  73. WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO Global database of vitamin A deficiency. Geneva, WHO, 2009.
  74. Sommer A, West KP Jr. Vitamin A deficiency: health, survival, and vision. New York, Oxford University Press, 1996 p. 19 ISBN 0195088247
  75. Lozoff B, Jimenez E, Wolf AW (September 1991). "Long-term developmental outcome of infants with iron deficiency". The New England Journal of Medicine. 325 (10): 687–94. doi:10.1056/NEJM199109053251004. PMID 1870641.
  76. Andersson M, Karumbunathan V, Zimmermann MB (April 2012). "Global iodine status in 2011 and trends over the past decade". The Journal of Nutrition. 142 (4): 744–50. doi:10.3945/jn.111.149393. PMID 22378324.
  77. Jones G, Steketee RW, Black RE, Bhutta ZA, Morris SS (July 2003). "How many child deaths can we prevent this year?". Lancet. 362 (9377): 65–71. doi:10.1016/S0140-6736(03)13811-1. PMID 12853204.
  78. WHO. Report of the expert consultation on the optimal duration of exclusive breastfeeding. Geneva, WHO, 2001.
  79. Ramakrishnan U, Yip R (April 2002). "Experiences and challenges in industrialized countries: control of iron deficiency in industrialized countries". The Journal of Nutrition. 132 (4 Suppl): 820S–4S. doi:10.1093/jn/132.4.820S. PMID 11925488.
  80. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. (January 2008). "Maternal and child undernutrition: global and regional exposures and health consequences". Lancet. 371 (9608): 243–60. doi:10.1016/S0140-6736(07)61690-0. PMID 18207566.
  81. Stewart, D. E.; Robinson, E.; Goldbloom, D. S.; Wright, C. (1990). "Infertility and eating disorders". American Journal of Obstetrics and Gynecology. 163 (4): 1196–1199. doi:10.1016/0002-9378(90)90688-4. ISSN 0002-9378. PMID 2220927.
  82. "Archived copy" (PDF). Archived from the original (PDF) on 2008-03-08. Retrieved 2008-03-08.CS1 maint: archived copy as title (link)
  83. UN (2011b). The Millennium Development Goals report 2011. New York, United Nations.
  84. "World Health Organization, European Health Report 2005: Public health action for healthier children and populations" (PDF). WHO Regional Office for Europe, Copenhagen. 2005.
  85. "WHO (2013b)" (PDF). World health statistics. Geneva, World Health Organization.
  86. Van de Poel E, Hosseinpoor AR, Speybroeck N, Van Ourti T, Vega J (April 2008). "Socioeconomic inequality in malnutrition in developing countries". Bulletin of the World Health Organization. 86 (4): 282–91. doi:10.2471/blt.07.044800. PMC 2647414. PMID 18438517.
  87. Polhamus B, et al. (2004). "Pediatric Nutrition Surveillance 2003 Report, Table 18D" (PDF). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta.
  88. Lassi ZS, Bhutta ZA (March 2015). "Community-based intervention packages for reducing maternal and neonatal morbidity and mortality and improving neonatal outcomes". The Cochrane Database of Systematic Reviews (3): CD007754. doi:10.1002/14651858.CD007754.pub3. PMID 25803792.
  89. Nabarro D (August 2013). "Global child and maternal nutrition--the SUN rises". Lancet. 382 (9893): 666–7. doi:10.1016/S0140-6736(13)61086-7. PMID 23746773.
  90. Commission on Life Sciences. (1985). Nutrition Education in US Medical Schools, p. 4. National Academies Press.
  91. Adams KM, Lindell KC, Kohlmeier M, Zeisel SH (April 2006). "Status of nutrition education in medical schools". The American Journal of Clinical Nutrition. 83 (4): 941S–944S. doi:10.1093/ajcn/83.4.941S. PMC 2430660. PMID 16600952.
  92. Di Pasquale, Mauro G. (2008). "Utilization of Proteins in Energy Metabolism". In Ira Wolinsky, Judy A. Driskell (ed.). Sports Nutrition: Energy metabolism and exercise. CRC Press. p. 73. ISBN 978-0-8493-7950-5.
  93. "Iowa State University: Extension and outreach".
  94. Wahlqvist, M. L. (2011). Food and Nutrition: Food and Health Systems in Australia and New Zealand (3rd ed.). NSW, Australia: Allen & Unwin. pp. 429–441. ISBN 978-1-74175-897-9.
  95. Chwang, Leh-Chii (September 2012). "Nutrition and dietics in aged care". Nutrition and Dietics. 69 (3): 203–207. doi:10.1111/j.1747-0080.2012.01617.x.
  96. Villa P, Bouville C, Courtin J, Helmer D, Mahieu E, Shipman P, et al. (July 1986). "Cannibalism in the neolithic". Science. 233 (4762): 431–7. Bibcode:1986Sci...233..431V. doi:10.1126/science.233.4762.431. PMID 17794567.
  97. Guzzardi, Sergio (2014-07-27). Buona Pasta. Sergio Guzzardi (published 2014). p. 19. ISBN 9786050314915. Retrieved 2014-11-21. The first two certain dates in the history of pasta in Italy are: 1154, when in a sort of tour guide ahead of its [time] Arab geographer Al-Idrin mentions 'a food of flour in the form of wires,' called Triyah [...], which is packaged in Palermo and was exported in barrels throughout the peninsula [...]; [...] and 1279 [...].
  98. "Lesson 1: Nutrition, history of nutrition and scope of nutrition" (PDF). Unit 1: Introduction to nutrition. Rai University. p. 1. Archived from the original (PDF) on August 24, 2006. Retrieved 2014-11-21. Food was sacred – hence eating was a sacred act. Food is magical – cooking was a magico-religous [sic] activity, every gesture, act and dish perhaps, endowed with ritual significance.
  99. History of the Study of Nutrition in Western Culture (Rai University lecture notes for General Nutrition course, 2004)
  100. Daniel 1:5-16 (alternative translation)
  101. Heinemann 2e Biology Activity Manual by Judith Brotherton and Kate Mundie
  102. "Unraveling the Enigma of Vitamin D". United States National Academy of Sciences. April 29, 2002. Archived from the original on February 4, 2013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.