Helicobacter heilmannii sensu lato

Helicobacter heilmannii sensu lato refers to a group of bacteria species within the Helicobacter genus. The Helicobacter genus consists of at least 40 species[1] of spiral-shaped (also described as corkscrew-shaped) flagellated, Gram-negative bacteria[2] of which the by far most prominent and well-known species is Helicobacter pylori (H. pylori).[3] H. pylori is associated with the development of gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, doudenal ulcers, stomach cancers that are not lymphomas, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori has also been associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study.[4]

Helicobacter heilmannii sensu lato
ComplicationsInfections associated with malignant and non-malignant stomach diseases.
TreatmentAntibiotic-based drug regimens can cure stomach diseases due to these bacteria.

The Helicobacter heilmannii sensu lato species of helicobacter bacteria take as part of their definition a similarity to H. pylori in being associated with the development of stomach inflammation, stomach ulcers,[3] duodenum ulcers,[5] stomach cancers that are not lypmhomas, and extrnodal marginal B cell lymphomas of the stomach.[3] It is important to recognize and diagnose the association of Helicobacter heilmannii sensu lato with these upper gastrointestinal tract diseases, particularly extranodal marginal zone lymphoma of the stomach, because many of them have been successfully treated using antibiotic-based drug regimens directed against the instigating Helicobacter heilmannii sensu lato bacterial species.[3]

Taxonomy

The current taxonomy of Helicobacter bacteria is a bit complex and incomplete with new species currently being considered as possibly belonging to the Helicobactor genus.[2][6][7] Within the Helicobacter genus, Helicobacter heilmannii are a group of Helicobacter species that are distinguished from H. pylori by being 2- to 3-fold larger in size (they are 4-10 micrometers in length and 0.5-0.8 micrometers in width while H. pylor are 2.5-4 micrometers in length and 0.5-1.0 micrometers in width) as well as in the position and noumber of their flagella (they have 4-23 flagella which are located at only one of their ends while H. pylori have 4-8 flagella which are divided between both of their ends).[3] The Helcobacter heilmannii grouping of bacteria is further divided into two groups: Helicobacter heilmanii sensu stricto (H. heilmanni s.s.) and Helicobacter heilmani sensu lato (H. heilmanni s.l.). H. heilmanni s.l. are Helicobacter heilmannii bacteria species that have been isolated from the stomachs of humans and animals but identified only on the basis of their histopathological appearance, electron microscopic appearance, and/or other crude taxonomic data: in most studies, the species of these Helicobacter heilmannii bacteria is not defined other than that they are non-H. pylori isolated from the stomachs of humans and animals. H. heilmanni s.l. is a clinically useful designation indicating unidentified H. pylori species of Helicobacer heilmannii that, like H. pylori, can cause upper gastrointestinal tract diseases in humans and are sensitive to a common set of antibiotic regimens. H. heilmanni s.s., in contrast, are Helicobacter heilmannii isolates whose species have been clearly defined, typically by unambiguous molecular biology methods.[3]

Epidemiology and transmission to humans

Most clinical studies have not identified the exact species of Helicobacter heilmanii associated with upper gastrointestinal tract disease and therefore designated these bacterial species as H. heilmanni s.l. However, investigative studies have identified these species in some patients with H. heilmanni s.l.-associated stomach diseases. The H. heilmanni s.s. species identified to date in the stomachs of humans with these upper gastrointestinal tract diseases, the natural hosts for these species, the sites these species colonize in their natural, non-human hosts, and each species prevalence as a percentage of all H.heilmanii s.s. species isolated from humans are given in the following Table.[3]

H. heilmanni s.s species identified in the stomachs of patients with H. heilmanni s.l.-associated diseasesNon-human natural hostsColonized sites in non-humans hostsPrevalence in humans
Helicobacter bizzozeroniicat, dog, fox, lynxstomach, dog saliva4%
Helicobacter feliscat, dog, rabbit, cheetahstomach15%
Helicobacter salomoniscat, dog, rabbitstomach, dog saliva21%
Helicobacter suispig, non-human primatesstomach14%-37%
Helicobacter heilmannii s.s1cat dog, fox, lyrnx, non-human primatesstomach8%
  1. Helicobacter heilmannii s.s. is a species in the Helicobacter heilmanii group; the appended "s.s". abbreviation is used to indicate that it refers to a specific species rather than the Helicobacter heilmannii group.[3]

Many reports suggest that individuals, including children,[5] acquire H. heilmanni s.l. infections by close contact with cats, dogs, pigs, and other farm animals as well as by eating raw pork contaminated by H. suis.[3] The H. heilmanni s.s. species listed in the above table have been isolated from these animals while H. suis has been isolated from fresh raw pork (H. suis remains viable for up to 48–72 hours in fresh raw pork).[8] Furthermore, there is a higher rate of H. heilmanni s.l.-associated infections in rural areas.[3] These findings suggest that the H. heilmanni s.l.-associated diseases are zoonotic diseases, i.e. infectious diseases that are caused or promoted by a pathogen(s) that spreads from animals to humans.[3]

H. heilmanni s.l.-associated diseases

H. heilmanni s.l. has been detected in the stomach of patients with acute and chronic gastritis, peptic ulcer disease of the stomach and duodenum, non-lymphoma types of stomach cancers, and extranodal marginal zone B-cell lymphoma of the stomach. Based on the ability of antibiotic-based drug regimens to improve and cure some of these diseases in humans and animal models, H. heilmanni s.l. infections are considered to be key contributes in their development and/or progression.[2][6] H. pylori is far more often involved in these diseases: H. heilmanni s.l. is typically associated with <1% of all Helicobacter-induced upper gastrointestinal tract diseases, while H. pylori is associated with the remaining cases.[9][10] In certain Asian countries, however, H. heilmanni s.l. appears to be associated with higher percentages of upper gastrointestinal tract diseases; for example, it is associated with 4% and 6.2%, respectively, of all Helicobacter-associated diseases in China and Thailand.[5][10]

Treatment of H. heilmanni s.l.- associated diseases

The treatment of patients with H. heilmanni s.l.-associated diseases has employed the same antibiotic-based drug regiments that have been successfully used to treat and cure H. pylori-associated diseases. These regimens have eradicated the H. heilmanni s.l. bacterium in the stomach to achieve symptomatic relief and total regression of some of the infection-associated non-malignant as well as malignant diseases, particularly extranodal marginal B-cell lymphoma.[3] Drug regimens of amoxicillin, clarithromycin, plus a proton pump inhibitor[6] or metronidazole, clarithromycin, plus a proton pump inhibitor[3] have been used to treat S. heilmani s.l.-associated upper gastrointestinal tract diseases successfully.

See also

References

  1. Kubota-Aizawa S, Ohno K, Fukushima K, Kanemoto H, Nakashima K, Uchida K, Chambers JK, Goto-Koshino Y, Watanabe T, Sekizaki T, Mimuro H, Tsujimoto H (July 2017). "Epidemiological study of gastric Helicobacter spp. in dogs with gastrointestinal disease in Japan and diversity of Helicobacter heilmannii sensu stricto". Veterinary Journal (London, England : 1997). 225: 56–62. doi:10.1016/j.tvjl.2017.04.004. PMID 28720300.
  2. Péré-Védrenne C, Flahou B, Loke MF, Ménard A, Vadivelu J (September 2017). "Other Helicobacters, gastric and gut microbiota". Helicobacter. 22 Suppl 1: e12407. doi:10.1111/hel.12407. PMID 28891140.
  3. Bento-Miranda M, Figueiredo C (December 2014). "Helicobacter heilmannii sensu lato: an overview of the infection in humans". World Journal of Gastroenterology. 20 (47): 17779–87. doi:10.3748/wjg.v20.i47.17779. PMC 4273128. PMID 25548476.
  4. Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF (July 2018). "Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects". World Journal of Gastroenterology. 24 (28): 3071–3089. doi:10.3748/wjg.v24.i28.3071. PMC 6064966. PMID 30065554.
  5. Iwanczak B, Biernat M, Iwanczak F, Grabinska J, Matusiewicz K, Gosciniak G (April 2012). "The clinical aspects of Helicobacter heilmannii infection in children with dyspeptic symptoms". Journal of Physiology and Pharmacology. 63 (2): 133–6. PMID 22653899.
  6. Ménard A, Smet A (September 2019). "Review: Other Helicobacter species". Helicobacter. 24 Suppl 1: e12645. doi:10.1111/hel.12645. PMID 31486233.
  7. Flahou B, Rimbara E, Mori S, Haesebrouck F, Shibayama K (September 2015). "The Other Helicobacters". Helicobacter. 20 Suppl 1: 62–7. doi:10.1111/hel.12259. PMID 26372827.
  8. Ménard A, Péré-Védrenne C, Haesebrouck F, Flahou B (September 2014). "Gastric and enterohepatic helicobacters other than Helicobacter pylori". Helicobacter. 19 Suppl 1: 59–67. doi:10.1111/hel.12162. PMID 25167947.
  9. Smedby KE, Ponzoni M (November 2017). "The aetiology of B-cell lymphoid malignancies with a focus on chronic inflammation and infections". Journal of Internal Medicine. 282 (5): 360–370. doi:10.1111/joim.12684. PMID 28875507.
  10. Wirth HP, Yang M (October 2016). "Different Pathophysiology of Gastritis in East and West? A Western Perspective". Inflammatory Intestinal Diseases. 1 (3): 113–122. doi:10.1159/000446300. PMC 5988118. PMID 29922666.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.