Equianalgesic

An equianalgesic chart is a conversion chart that lists equivalent doses of analgesics (drugs used to relieve pain). Equianalgesic charts are used for calculation of an equivalent dose (a dose which would offer an equal amount of analgesia) between different analgesics.[1] Tables of this general type are also available for NSAIDs, benzodiazepines, depressants, stimulants, anticholinergics and others as well.

Format

Equianalgesic tables are available in different formats, such as pocket-sized cards for ease of reference.[1] A frequently-seen format has the drug names in the left column, the route of administration in the center columns and any notes in the right column.[2]

Purpose

There are several reasons for switching a patient to a different pain medication. These include practical considerations such as lower cost or unavailability of a drug at the patient's preferred pharmacy, or medical reasons such as lack of effectiveness of the current drug or to minimize adverse effects. Some patients request to be switched to a different narcotic due to stigma associated with a particular drug (e.g. a patient refusing methadone due to its association with opioid addiction treatment).[3] Equianalgesic charts are also used when calculating an equivalent dosage of the same drug, but with a different route of administration.

Precautions

An equianalgesic chart can be a useful tool, but the user must take care to correct for all relevant variables such as route of administration, cross tolerance, half-life and the bioavailability of a drug.[4] For example, the narcotic levorphanol is 4–8 times stronger than morphine, but also has a much longer half-life. Simply switching the patient from 40 mg of morphine to 10 mg of levorphanol would be dangerous due to dose accumulation, and hence frequency of administration should also be taken into account.

There are other concerns about equianalgesic charts. Many charts derive their data from studies conducted on opioid-naïve patients. Patients with chronic (rather than acute) pain may respond to analgesia differently. Repeated administration of a medication is also different from single dosing, as many drugs have active metabolites that can build up in the body.[5] Patient variables such as sex, age, and organ function may also influence the effect of the drug on the system. These variables are rarely included in equianalgesic charts.[6]

Opioid equivalency table

Opioids are a class of compounds that elicit analgesic (pain killing) effects in humans and animals by binding to the µ-opioid receptor within the central nervous system. The following table lists opioid and non-opioid analgesic drugs and their relative potencies. Values for the potencies represent opioids taken orally unless another route of administration is provided. As such, their bioavailabilities differ, and they may be more potent when taken intravenously. Methadone is different from most opioids considering its potency can vary depending on how long it is taken. Acute use, 1–3 days, yields a potency about 1.5× stronger than that of morphine and chronic use (7 days+) yields a potency about 2.5 to 5× that of morphine due to methadone being stored in fat tissue, thus giving higher serum levels with longer use. Similarly, the effect of tramadol increases after consecutive dosing due to the accumulation of its active metabolite and an increase of the oral bioavailability in chronic use; this effect becomes less significant again with even longer use as tolerance develops.

Opioid Equivalency Table
(morphine, oral)
Analgesic Strength
(relative)
Equivalent dose
(10 mg oral morphine)
Bioavailability Half-life of active metabolites
(hours)
Oral-to-parenteral ratio Speed of onset Duration Chemical / structural class
Paracetamol (non-opioid) 1360 3600 mg 63–89% 1–4 37 min (PO); 8 min (IV) 5 – 6 hours
Aspirin (NSAID, non-opioid) 1360 3600 mg 80–100% 3.1–9
Ibuprofen[7] (NSAID, non-opioid) 1222 2220 mg 87–100% 1.3–3
Diflunisal (NSAID, non-opioid) 1160 1600 mg 80–90% 8–12
Naproxen[7] (NSAID, non-opioid) 1138 1380 mg 95% 12–24
Piroxicam (NSAID non-opioid) 1120 (est.)
Indomethacin (NSAID non-opioid) 164 (est.)
Diclofenac[7][8] (NSAID, non-opioid) 114 (est.) 160 mg (est.) 50–60% 1–4
Nefopam (Centrally-acting non-opioid) 58 (est.)
Dextropropoxyphene[9] 113120 130–200 mg
Codeine 110320 100–120 mg (PO) ~90% 2.5–3 (C6G 1.94;[10] morphine 2–3) 15–30 min (PO) 4–6 hours
Tramadol 110 ~100 mg 75% (IR), 85–90% (ER) 6.0–8.8[11] (M1)
Opium (oral) 110 ~100 mg ~25% (morphine) 2.5–3.0 (morphine, codeine)
Tilidine 110 100 mg
Dihydrocodeine 15 50 mg 20% 4
Anileridine[12] 14 40 mg
Alphaprodine 1416 40–60 mg
Tapentadol 310[13] 32 mg 32% (fasting)
Pethidine (meperidine) 13 30 mg SC/IM/IV, 300 mg (PO) 50–60% 3–5
Benzylfentanyl 12
AH-7921 45
Hydrocodone 1 10 mg =80% 3.8–6
Metopon 1 10 mg
Pentazocine lactate (IV)[14] 1 10 mg SC/IV/IM, 150 mg (PO)
Morphine (oral) 1 10 mg ~25% 2-4 3:1 30 min (PO) 3–5 hours
Oxycodone[15] 1.5 6.67 mg 60 - 87% 2 – 3 hours (Instant Release)(PO); 4.5 hours (Controlled Release)(PO) 10–30 min (Instant Release)(PO); 1 hour (Controlled Release)(PO) 3 – 6 hours (Instant Release)(PO); 10–12 hours (Controlled Release)(PO)[16]
Spiradoline 1.5
Nicomorphine 2–3 3.33-5 mg 20% 4
Morphine (IV/IM) 3 3.33 mg 100% 2–3 3:1 5 min (IV); 15 min (IM) 3–7 hours
Clonitazene 3 3.33 mg
Methadone (acute)[17][18] 3–4 2.5–3.33 mg 40–90% 15–60 2:1
Methadone (chronic)[18] 2.5–5 3.33  mg 40–90% 15–60 2:1
Phenazocine 4 ~2.5 mg
Diamorphine (heroin; IV/IM)[19] 4–5 2–2.5 mg 100% <0.6 Instantaneously (from 5 - 15 sec)(IV); 2 - 5 min (IM) 4 to 5 hours
Dezocine 4–6 1.6–2.5 mg 97% (IM) 2.2
Hydromorphone[20] 4 1.5 mg (SC)/(IV)/(IM), 7.5 mg (PO) 62% 2–3 5:1
Oxymorphone[15] 3–7 10 mg (PO), 1 mg (IV,IM & Interlaminar) 10%–PO , ≈ 25% Sublabial , ≈ 28% Buccal , (35% - 40%) Sublingual & Intranasal 43% BA. 7.25–9.43 35 min (PO), Instantaneously (from 5 - 15 sec)(IV) 6–8 hours ([[Sublabial (<30 min),Buccal & Sublingual(From around 10~15 min)(IN) 23%-43% U-47700 7.5 1.5 mg 1.5-3
Levorphanol[21] 8 1.25 mg 70% 11–16 1:1
Desomorphine (Krokodil) 8–10 1–1.25 mg ~100% (IV) 2–3 Instantaneously (from 5 - 15 sec)(IV); 2 - 5 min (IM) 3 – 4 hours
N-Phenethylnormorphine 8–14
Alfentanyl 10–25
Trefentanil (10–25)+
Brifentanil (10–25)+
Acetylfentanyl 15
7-Hydroxymitragynine 17 ~0.6 mg
Furanylfentanyl 20
Butyrfentanyl 25
Enadoline 25
Buprenorphine[9] 40 0.4 mg 35–40% (SL) 20–70, mean 37 45 min 16–30 hours
N-Phenethyl-14-ethoxymetopon 60
Etonitazene 60 160 µg
Phenomorphan 60–80 0.13–0.16 mg
N-Phenethylnordesomorphine 85
Phenaridine (50–100)−
Fentanyl 50–100 0.1 mg (100 µg) IM/IV 33% (SL); 92% (TD); 89% (INS); 50% (buc) 0.04 (IV); 7 (TD) 5 min (TD/IV) 30–60 minutes (IV)
Acrylfentanyl (50–100+)
14-Cinnamoyloxycodeinone 177
Remifentanil 100–200 50–100 µg
Ocfentanil 125–250 40–80 µg
Ro4-1539 240–480
Sufentanil 500–1,000 10–20 µg 4.4
BDPC 504 ~20 µg
C-8813 591
4-Phenylfentanyl 800
3-Methylfentanyl 1000–1500
Etorphine 1,000–3,000 3.3–10 µg
Ohmefentanyl 6300
Acetorphine 8700
Dihydroetorphine[22] 1,000–12,000 0.83–10 µg (20–40 µg SL)
2-Fluorohmefentanil 18,000
4-Carboethoxyohmefentanil 30,000
R-30490 (10,000–100,000)−
Carfentanil[23] 10,000 1.0 µg 7.7
Lofentanil (10,000–100,000)+
PO: oral • IV: intravenous injection • IM: intramuscular injection • SC: subcutaneous injection • SL: sublingual • TD: transdermal
"Strength" is defined as analgesic potency relative to oral morphine.
Tolerance, sensitization, cross-tolerance, metabolism, and hyperalgesia may be complex factors in some individuals.
Interactions with other drugs, food and drink, and other factors may increase or decrease the effect of certain analgesics and alter their half-life.
Because some listed analgesics are prodrugs or have active metabolites, individual variation in liver enzymes (e.g., CYP2D6 enzyme) may result in significantly altered effects.

See also

  • Oripavine – for more on the comparative strength of oripavine derivatives

References

  1. Joishy, S. K. (1999). Palliative medicine secrets. Philadelphia PA: Hanley & Belfus. p. 97. ISBN 978-1-56053-304-7.
  2. McPherson, Mary Lynn M. (2000). Demystifying Opioid Conversion Calculations: A Guide for Effective Dosing. Bethesda MD: American Society of Health-System Pharmacists. p. 5. ISBN 978-1-58528-198-5.
  3. McPherson 2000, p. 3
  4. McPherson 2000, p. 4
  5. McPherson 2000, p. 8
  6. McPherson 2000, p. 9
  7. "Dosing Guidelines for Acetaminophen and Selected NSAIDs" (PDF). www3.us.elsevierhealth.com.
  8. http://www.emedexpert.com/compare-meds/diclofenac-vs-naproxen.shtml
  9. "Ch. 4 Narcotics: Synthetic Narcotics: Dextropropoxyphene". Drugs of Abuse. Drug Enforcement Administration, U.S. Department of Justice. 2005. Archived from the original on 2006-11-02.CS1 maint: BOT: original-url status unknown (link)
  10. KuKanich B (February 2010). "Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs". J. Vet. Pharmacol. Ther. 33 (1): 15–21. doi:10.1111/j.1365-2885.2009.01098.x. PMC 2867071. PMID 20444020.
  11. "ULTRAM® (tramadol hydrochloride) Tablets Full Prescribing Information" (PDF). US Food and Drug Administration. Ortho-McNeil Pharmaceutical, Inc. March 2008. p. 4. Retrieved December 28, 2016. The mean terminal plasma elimination half-lives of racemic tramadol and racemic M1 are 6.3 ± 1.4 and 7.4 ± 1.4 hours, respectively. The plasma elimination half-life of racemic tramadol increased from approximately six hours to seven hours upon multiple dosing.
  12. "Anileridine". DrugBank Version: 3.0. DrugBank.
  13. "Equianalgesic Dosing of Opioids for Pain Management" (PDF). August 2012.
  14. "TALWIN (pentazocine lactate) injection, solution". DailyMed. National Institute of Health. Retrieved 2011-12-10.
  15. "Equianalgesic Conversion". GlobalRPH.
  16. Sunshine, A; Olson, N; Colon, A; Rivera, J; Kaiko, R.F.; Fitzmartin, R.D.; Reder, R.F.; Goldenheim, P.D. (July 1996). "Analgesic Efficacy of Controlled‐Release Oxycodone in Postoperative Pain". Journal of Clinical Pharmacology. 36 (7): 595–603. doi:10.1002/j.1552-4604.1996.tb04223.x. PMID 8844441.
  17. Tabla de equivalencia opiáceos
  18. Manfredonia JF (March 2005). "Prescribing methadone for pain management in end-of-life care". J Am Osteopath Assoc. 105 (3 Suppl 1): S18–21. PMID 18154194. Table 2: Conversion Ratio of Oral Morphine to Methadone.
  19. Reichle CW, Smith GM, Gravenstein JS, Macris SG, Beecher HK (April 1962). "Comparative analgesic potency of heroin and morphine in postoperative patients". J. Pharmacol. Exp. Ther. 136 (1): 43–6. PMID 14491157.
  20. Paul Walker. "MORPHINE vs HYDROMORPHINE vs OXYCODONE vs THE PATCH". Archived from the original on December 24, 2001.
  21. "Levorphanol". DrugBank Version: 3.0. DrugBank.
  22. Ohmori, Satoshi; Morimoto, Yasunori (2002). "Dihydroetorphine: a potent analgesic: pharmacology, toxicology, pharmacokinetics, and clinical effects". CNS Drug Reviews. 8 (4): 391–404. doi:10.1111/j.1527-3458.2002.tb00236.x. ISSN 1080-563X. PMID 12481194. Dihydroetorphine (DHE) is one of the strongest analgesic opioid alkaloids known; it is 1000 to 12,000 times more potent than morphine. ...
         MOR is the most commonly used opioid analgesic for pain relief, and its oral daily dose (20 to 1000 mg) is relatively high (44). On the other hand, DHE produces rapid analgesic effects at an extremely low dose, 20 ìg sublingually in humans (60, 78). ...
  23. "Carfentanil". DrugBank Version: 3.0. DrugBank.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.