Body mass index

Body mass index (BMI) is a value derived from the mass (weight) and height of a person. The BMI is defined as the body mass divided by the square of the body height, and is universally expressed in units of kg/m2, resulting from mass in kilograms and height in metres.

Body mass index (BMI)
Medical diagnostics
A graph of body mass index as a function of body mass and body height. The dashed lines represent subdivisions within a major class.
SynonymsQuetelet index

The BMI may be determined using a table[note 1] or chart which displays BMI as a function of mass and height using contour lines or colours for different BMI categories, and which may use other units of measurement (converted to metric units for the calculation).[note 2]

The BMI is a convenient rule of thumb used to broadly categorize a person as underweight, normal weight, overweight, or obese based on tissue mass (muscle, fat, and bone) and height. That categorization is the subject of some debate about where on the BMI scale the dividing lines between categories should be placed.[1] Commonly accepted BMI ranges are underweight (under 18.5 kg/m2), normal weight (18.5 to 25), overweight (25 to 30), and obese (over 30).[2]

BMIs under 20.0 and over 25.0 have been associated with higher all-causes mortality, with the risk increasing with distance from the 20.0–25.0 range.[3]


Obesity and BMI

Adolphe Quetelet, a Belgian astronomer, mathematician, statistician, and sociologist, devised the basis of the BMI between 1830 and 1850 as he developed what he called "social physics".[4] The modern term "body mass index" (BMI) for the ratio of human body weight to squared height was coined in a paper published in the July 1972 edition of the Journal of Chronic Diseases by Ancel Keys and others. In this paper, Keys argued that what he termed the BMI was "...if not fully satisfactory, at least as good as any other relative weight index as an indicator of relative obesity".[5][6][7]

The interest in an index that measures body fat came with observed increasing obesity in prosperous Western societies. Keys explicitly judged BMI as appropriate for population studies and inappropriate for individual evaluation. Nevertheless, due to its simplicity, it has come to be widely used for preliminary diagnoses.[8] Additional metrics, such as waist circumference, can be more useful.[9]

The BMI is universally expressed in kg/m2, resulting from mass in kilograms and height in metres. If pounds and inches are used, a conversion factor of 703 (kg/m2)/(lb/in2) must be applied. When the term BMI is used informally, the units are usually omitted.

BMI provides a simple numeric measure of a person's thickness or thinness, allowing health professionals to discuss weight problems more objectively with their patients. BMI was designed to be used as a simple means of classifying average sedentary (physically inactive) populations, with an average body composition.[10] For such individuals, the value recommendations as of 2014 are as follows: a BMI from 18.5 up to 25 kg/m2 may indicate optimal weight, a BMI lower than 18.5 suggests the person is underweight, a number from 25 up to 30 may indicate the person is overweight, and a number from 30 upwards suggests the person is obese.[8][9] Lean male athletes often have a high muscle-to-fat ratio and therefore a BMI that is misleadingly high relative to their body-fat percentage.[9]


BMI is proportional to the mass and inversely proportional to the square of the height. So, if all body dimensions double, and mass scales naturally with the cube of the height, then BMI doubles instead of remaining the same. This results in taller people having a reported BMI that is uncharacteristically high, compared to their actual body fat levels. In comparison, the Ponderal index is based on the natural scaling of mass with the third power of the height.

However, many taller people are not just "scaled up" short people but tend to have narrower frames in proportion to their height. Carl Lavie has written that, "The B.M.I. tables are excellent for identifying obesity and body fat in large populations, but they are far less reliable for determining fatness in individuals."[11]


A common use of the BMI is to assess how far an individual's body weight departs from what is normal or desirable for a person's height. The weight excess or deficiency may, in part, be accounted for by body fat (adipose tissue) although other factors such as muscularity also affect BMI significantly (see discussion below and overweight).[12]

The WHO regards a BMI of less than 18.5 as underweight and may indicate malnutrition, an eating disorder, or other health problems, while a BMI equal to or greater than 25 is considered overweight and above 30 is considered obese.[13] These ranges of BMI values are valid only as statistical categories.

Category BMI (kg/m2) BMI Prime
fromto fromto
Very severely underweight 15 0.60
Severely underweight 1516 0.600.64
Underweight 1618.5 0.640.74
Normal (healthy weight) 18.525 0.741.0
Overweight 2530 1.01.2
Obese Class I (Moderately obese) 3035 1.21.4
Obese Class II (Severely obese) 3540 1.41.6
Obese Class III (Very severely obese) 4045 1.61.8
Obese Class IV (Morbidly obese) 4550 1.82
Obese Class V (Super obese) 5060 22.4
Obese Class VI (Hyper obese) 60 2.4

Children (aged 2 to 20)

BMI for age percentiles for boys 2 to 20 years of age.
BMI for age percentiles for girls 2 to 20 years of age.

BMI is used differently for children. It is calculated in the same way as for adults, but then compared to typical values for other children of the same age. Instead of comparison against fixed thresholds for underweight and overweight, the BMI is compared against the percentiles for children of the same sex and age.[14]

A BMI that is less than the 5th percentile is considered underweight and above the 95th percentile is considered obese. Children with a BMI between the 85th and 95th percentile are considered to be overweight.[15]

Recent studies in Britain have indicated that females between the ages 12 and 16 have a higher BMI than males of the same age by 1.0 kg/m2 on average.[16]

International variations

These recommended distinctions along the linear scale may vary from time to time and country to country, making global, longitudinal surveys problematic. People from different ethnic groups, populations, and descent have different associations between BMI, percentage of body fat, and health risks, with a higher risk of type 2 diabetes mellitus and atherosclerotic cardiovascular disease at BMIs lower than the WHO cut-off point for overweight, 25 kg/m2, although the cut-off for observed risk varies among different populations. The cut-off for observed risk varies based on populations and subpopulations both in Europe and Asia.[17]

Hong Kong

The Hospital Authority of Hong Kong recommends the use of the following BMI ranges:[18]

Category BMI (kg/m2)
Underweight 18.5
Normal Range 18.523
Overweight—At Risk 2325
Overweight—Moderately Obese 2530
Overweight—Severely Obese 30


In Japan, the following table is the criteria for BMI and its different stages determined by a 2000 study from the Japan Society for the Study of Obesity:[19][20]

Category BMI (kg/m2)
Low 18.5
Normal 18.525
Obese (Level 1) 2530
Obese (Level 2) 3035
Obese (Level 3) 3540
Obese (Level 4) 40


In Singapore, the BMI cut-off figures were revised in 2005, motivated by studies showing that many Asian populations, including Singaporeans, have higher proportion of body fat and increased risk for cardiovascular diseases and diabetes mellitus, compared with general BMI recommendations in other countries. The BMI cut-offs are presented with an emphasis on health risk rather than weight.

Health Risk BMI (kg/m2)
Risk of developing problems such as nutritional deficiency and osteoporosis Under 18.5
Low Risk (healthy range) 18.5 to 23
Moderate risk of developing heart disease, high blood pressure, stroke, diabetes 23 to 27.5
High risk of developing heart disease, high blood pressure, stroke, diabetes Over 27.5

United States

In 1998, the U.S. National Institutes of Health and the Centers for Disease Control and Prevention brought U.S. definitions in line with World Health Organization guidelines, lowering the normal/overweight cut-off from BMI 27.8 to BMI 25. This had the effect of redefining approximately 29 million Americans, previously healthy, to overweight.[21]

This can partially explain the increase in the overweight diagnosis in the past 20 years, and the increase in sales of weight loss products during the same time. WHO also recommends lowering the normal/overweight threshold for South East Asian body types to around BMI 23, and expects further revisions to emerge from clinical studies of different body types.[22]

The U.S. National Health and Nutrition Examination Survey of 1994 showed that 59.8% of American men and 51.2% of women had BMIs over 25.[23] Morbid obesity—a BMI of 40 or more—was found in 2% of the men and 4% of the women. A survey in 2007 showed 63% of Americans are overweight or obese, with 26% in the obese category (a BMI of 30 or more). As of 2014, 37.7% of adults in the United States were obese, categorized as 35.0% of men and 40.4% of women; class 3 obesity (BMI over 40) values were 7.7% for men and 9.9% for women.[24]

Body Mass Index values for males and females aged 20 and over, and selected percentiles by age: United States, 2011–2014.[25]
Age Percentile
5th 10th 15th 25th 50th 75th 85th 90th 95th
Men BMI (kg/m2)
20 years and over (total) 20.7 22.2 23.0 24.6 27.7 31.6 34.0 36.1 39.8
20–29 years 19.3 20.5 21.2 22.5 25.5 30.5 33.1 35.1 39.2
30–39 years 21.1 22.4 23.3 24.8 27.5 31.9 35.1 36.5 39.3
40–49 years 21.9 23.4 24.3 25.7 28.5 31.9 34.4 36.5 40.0
50–59 years 21.6 22.7 23.6 25.4 28.3 32.0 34.0 35.2 40.3
60–69 years 21.6 22.7 23.6 25.3 28.0 32.4 35.3 36.9 41.2
70–79 years 21.5 23.2 23.9 25.4 27.8 30.9 33.1 34.9 38.9
80 years and over 20.0 21.5 22.5 24.1 26.3 29.0 31.1 32.3 33.8
Age Women BMI (kg/m2)
20 years and over (total) 19.6 21.0 22.0 23.6 27.7 33.2 36.5 39.3 43.3
20–29 years 18.6 19.8 20.7 21.9 25.6 31.8 36.0 38.9 42.0
30–39 years 19.8 21.1 22.0 23.3 27.6 33.1 36.6 40.0 44.7
40–49 years 20.0 21.5 22.5 23.7 28.1 33.4 37.0 39.6 44.5
50–59 years 19.9 21.5 22.2 24.5 28.6 34.4 38.3 40.7 45.2
60–69 years 20.0 21.7 23.0 24.5 28.9 33.4 36.1 38.7 41.8
70–79 years 20.5 22.1 22.9 24.6 28.3 33.4 36.5 39.1 42.9
80 years and over 19.3 20.4 21.3 23.3 26.1 29.7 30.9 32.8 35.2

Consequences of elevated level in adults

The BMI ranges are based on the relationship between body weight and disease and death.[26] Overweight and obese individuals are at an increased risk for the following diseases:[27]

Among people who have never smoked, overweight/obesity is associated with 51% increase in mortality compared with people who have always been a normal weight.[30]


Public health

The BMI is generally used as a means of correlation between groups related by general mass and can serve as a vague means of estimating adiposity. The duality of the BMI is that, while it is easy to use as a general calculation, it is limited as to how accurate and pertinent the data obtained from it can be. Generally, the index is suitable for recognizing trends within sedentary or overweight individuals because there is a smaller margin of error.[31] The BMI has been used by the WHO as the standard for recording obesity statistics since the early 1980s.

This general correlation is particularly useful for consensus data regarding obesity or various other conditions because it can be used to build a semi-accurate representation from which a solution can be stipulated, or the RDA for a group can be calculated. Similarly, this is becoming more and more pertinent to the growth of children, due to the fact that the majority of children are sedentary.[32] Cross-sectional studies indicated that sedentary people can decrease BMI by becoming more physically active. Smaller effects are seen in prospective cohort studies which lend to support active mobility as a means to prevent a further increase in BMI.[33]

Clinical practice

BMI categories are generally regarded as a satisfactory tool for measuring whether sedentary individuals are underweight, overweight, or obese with various exceptions, such as: athletes, children, the elderly, and the infirm. Also, the growth of a child is documented against a BMI-measured growth chart. Obesity trends can then be calculated from the difference between the child's BMI and the BMI on the chart. In the United States, BMI is also used as a measure of underweight, owing to advocacy on behalf of those with eating disorders, such as anorexia nervosa and bulimia nervosa.


In France, Italy, and Spain, legislation has been introduced banning the usage of fashion show models having a BMI below 18.[34] In Israel, a BMI below 18.5 is banned.[35] This is done to fight anorexia among models and people interested in fashion.


This graph shows the correlation between body mass index (BMI) and body fat percentage (BFP) for 8550 men in NCHS' NHANES 1994 data. Data in the upper left and lower right quadrants suggest the limitations of BMI.[36]

The medical establishment[37] and statistical community[38] have both highlighted the limitations of BMI.


The exponent in the denominator of the formula for BMI is arbitrary. The BMI depends upon weight and the square of height. Since mass increases to the third power of linear dimensions, taller individuals with exactly the same body shape and relative composition have a larger BMI.[39]

According to mathematician Nick Trefethen, "BMI divides the weight by too large a number for short people and too small a number for tall people. So short people are misled into thinking that they are thinner than they are, and tall people are misled into thinking they are fatter."[40]

For US adults, exponent estimates range from 1.92 to 1.96 for males and from 1.45 to 1.95 for females.[41][42]

Physical characteristics

The BMI overestimates roughly 10% for a large (or tall) frame and underestimates roughly 10% for a smaller frame (short stature). In other words, persons with small frames would be carrying more fat than optimal, but their BMI indicates that they are normal. Conversely, large framed (or tall) individuals may be quite healthy, with a fairly low body fat percentage, but be classified as overweight by BMI.[43]

For example, a height/weight chart may say the ideal weight (BMI 21.5) for a 1.78-metre-tall (5 ft 10 in) man is 68 kilograms (150 lb). But if that man has a slender build (small frame), he may be overweight at 68 kg or 150 lb and should reduce by 10% to roughly 61 kg or 135 lb (BMI 19.4). In the reverse, the man with a larger frame and more solid build should increase by 10%, to roughly 75 kg or 165 lb (BMI 23.7). If one teeters on the edge of small/medium or medium/large, common sense should be used in calculating one's ideal weight. However, falling into one's ideal weight range for height and build is still not as accurate in determining health risk factors as waist-to-height ratio and actual body fat percentage.[44]

Accurate frame size calculators use several measurements (wrist circumference, elbow width, neck circumference and others) to determine what category an individual falls into for a given height.[45] The BMI also fails to take into account loss of height through ageing. In this situation, BMI will increase without any corresponding increase in weight.

A new formula, that accounts for the distortions of BMI at high and low heights, has been suggested:[46]

Muscle versus fat

Assumptions about the distribution between muscle mass and fat mass are inexact. BMI generally overestimates adiposity on those with more lean body mass (e.g., athletes) and underestimates excess adiposity on those with less lean body mass.

A study in June 2008 by Romero-Corral et al. examined 13,601 subjects from the United States' third National Health and Nutrition Examination Survey (NHANES III) and found that BMI-defined obesity (BMI > 30) was present in 21% of men and 31% of women. Body fat-defined obesity was found in 50% of men and 62% of women. While BMI-defined obesity showed high specificity (95% for men and 99% for women), BMI showed poor sensitivity (36% for men and 49% for women). In other words, BMI is better at determining a person is not obese than it is at determining a person is obese. Despite this undercounting of obesity by BMI, BMI values in the intermediate BMI range of 20–30 were found to be associated with a wide range of body fat percentages. For men with a BMI of 25, about 20% have a body fat percentage below 20% and about 10% have body fat percentage above 30%.[36]

BMI is particularly inaccurate for people who are very fit or athletic, as their high muscle mass can classify them in the overweight category by BMI, even though their body fat percentages frequently fall in the 10–15% category, which is below that of a more sedentary person of average build who has a normal BMI number. For example, the BMI of bodybuilder and eight-time Mr. Olympia Ronnie Coleman was 41.8 at his peak physical condition, which would be considered morbidly obese.[47] Body composition for athletes is often better calculated using measures of body fat, as determined by such techniques as skinfold measurements or underwater weighing and the limitations of manual measurement have also led to new, alternative methods to measure obesity, such as the body volume index.

Variation in definitions of categories

It is not clear where on the BMI scale the threshold for overweight and obese should be set. Because of this the standards have varied over the past few decades. Between 1980 and 2000 the U.S. Dietary Guidelines have defined overweight at a variety of levels ranging from a BMI of 24.9 to 27.1. In 1985 the National Institutes of Health (NIH) consensus conference recommended that overweight BMI be set at a BMI of 27.8 for men and 27.3 for women.

In 1998 a NIH report concluded that a BMI over 25 is overweight and a BMI over 30 is obese.[48] In the 1990s the World Health Organization (WHO) decided that a BMI of 25 to 30 should be considered overweight and a BMI over 30 is obese, the standards the NIH set. This became the definitive guide for determining if someone is overweight.

The current WHO and NIH ranges of normal weights are proved to be associated with decreased risks of some diseases such as diabetes type II; however using the same range of BMI for men and women is considered arbitrary, and makes the definition of underweight quite unsuitable for men.[49]

One study found that the vast majority of people labelled 'overweight' and 'obese' according to current definitions do not in fact face any meaningful increased risk for early death. In a quantitative analysis of a number of studies, involving more than 600,000 men and women, the lowest mortality rates were found for people with BMIs between 23 and 29; most of the 25–30 range considered 'overweight' was not associated with higher risk.[50]

Relationship to health

A study published by Journal of the American Medical Association (JAMA) in 2005 showed that overweight people had a death rate similar to normal weight people as defined by BMI, while underweight and obese people had a higher death rate.[51]

A study published by The Lancet in 2009 involving 900,000 adults showed that overweight and underweight people both had a mortality rate higher than normal weight people as defined by BMI. The optimal BMI was found to be in the range of 22.5–25.[52]

High BMI is associated with type 2 diabetes only in persons with high serum gamma-glutamyl transpeptidase.[53]

In an analysis of 40 studies involving 250,000 people, patients with coronary artery disease with normal BMIs were at higher risk of death from cardiovascular disease than people whose BMIs put them in the overweight range (BMI 25–29.9).[54]

One study found that BMI had a good general correlation with body fat percentage, and noted that obesity has overtaken smoking as the world's number one cause of death. But it also notes that in the study 50% of men and 62% of women were obese according to body fat defined obesity, while only 21% of men and 31% of women were obese according to BMI, meaning that BMI was found to underestimate the number of obese subjects.[36]

A 2010 study that followed 11,000 subjects for up to eight years concluded that BMI is not a good measure for the risk of heart attack, stroke or death. A better measure was found to be the waist-to-height ratio.[55] A 2011 study that followed 60,000 participants for up to 13 years found that waist–hip ratio was a better predictor of ischaemic heart disease mortality.[56]


BMI prime

BMI prime, a modification of the BMI system, is the ratio of actual BMI to upper limit optimal BMI (currently defined at 25 kg/m2), i.e., the actual BMI expressed as a proportion of upper limit optimal. The ratio of actual body weight to body weight for upper limit optimal BMI (25 kg/m2) is equal to BMI Prime. BMI Prime is a dimensionless number independent of units. Individuals with BMI Prime less than 0.74 are underweight; those with between 0.74 and 1.00 have optimal weight; and those at 1.00 or greater are overweight. BMI Prime is useful clinically because it shows by what ratio (e.g. 1.36) or percentage (e.g. 136%, or 36% above) a person deviates from the maximum optimal BMI.

For instance, a person with BMI 34 kg/m2 has a BMI Prime of 34/25 = 1.36, and is 36% over their upper mass limit. In South East Asian and South Chinese populations (see § international variations), BMI Prime should be calculated using an upper limit BMI of 23 in the denominator instead of 25. BMI Prime allows easy comparison between populations whose upper-limit optimal BMI values differ.[57]

Waist circumference

Waist circumference is a good indicator of visceral fat, which poses more health risks than fat elsewhere. According to the U.S. National Institutes of Health (NIH), waist circumference in excess of 1,020 mm (40 in) for men and 880 mm (35 in) for (non-pregnant) women, is considered to imply a high risk for type 2 diabetes, dyslipidemia, hypertension, and CVD. Waist circumference can be a better indicator of obesity-related disease risk than BMI. For example, this is the case in populations of Asian descent and older people.[58] 940 mm (37 in) for men and 800 mm (31 in) for women has been stated to pose "higher risk", with the NIH figures "even higher".[59]

Waist-to-hip circumference ratio has also been used, but has been found to be no better than waist circumference alone, and more complicated to measure.[60]

A related indicator is waist circumference divided by height. The values indicating increased risk are: greater than 0.5 for people under 40 years of age, 0.5 to 0.6 for people aged 40–50, and greater than 0.6 for people over 50 years of age.[61]

Surface-based body shape index

The Surface-based Body Shape Index (SBSI) is far more rigorous and is based upon four key measurements: the body surface area (BSA), vertical trunk circumference (VTC), waist circumference (WC) and height (H). Data on 11,808 subjects from the National Health and Human Nutrition Examination Surveys (NHANES) 1999–2004, showed that SBSI outperformed BMI, waist circumference, and A Body Shape Index (ABSI), an alternative to BMI.[62][63]

A simplified, dimensionless form of SBSI, known as SBSI*, has also been developed.[63]

Modified body mass index

Within some medical contexts, such as familial amyloid polyneuropathy, serum albumin is factored in to produce a modified body mass index (mBMI). The mBMI can be obtained by multiplying the BMI by serum albumin, in grams per litre.[64]

See also


  1. e.g., the Body Mass Index Table Archived 2010-03-10 at the Wayback Machine from the National Institutes of Health's NHLBI.
  2. For example, in the UK where people often know their weight in stone and height in feet and inches – see "Calculate your body mass index". Retrieved 2019-12-11.


  1. Malcolm Kendrick (April 12, 2015). "Why being 'overweight' means you live longer: The way scientists twist the facts". Archived from the original on 12 April 2015. Retrieved 12 April 2015.
  2. "WHO Mean Body Mass Index (BMI)". World Health Organization. Retrieved 5 February 2019.
  3. Di Angelantonio E, Bhupathiraju ShN; et al. (2016-08-20). "Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents". Lancet. 388(10046) (776–86): 776–786. doi:10.1016/S0140-6736(16)30175-1. PMC 4995441. PMID 27423262.
  4. Eknoyan G (January 2008). "Adolphe Quetelet (1796–1874)--the average man and indices of obesity". Nephrology, Dialysis, Transplantation. 23 (1): 47–51. doi:10.1093/ndt/gfm517. PMID 17890752.
  5. Blackburn H, Jacobs D (June 2014). "Commentary: Origins and evolution of body mass index (BMI): continuing saga" (PDF). International Journal of Epidemiology. 43 (3): 665–669. doi:10.1093/ije/dyu061. PMID 24691955.
  6. Jeremy Singer-Vine (July 20, 2009). "Beyond BMI: Why doctors won't stop using an outdated measure for obesity". Archived from the original on 7 September 2011. Retrieved 15 December 2013.
  7. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL (July 1972). "Indices of relative weight and obesity". Journal of Chronic Diseases. 25 (6): 329–343. doi:10.1016/0021-9681(72)90027-6. PMID 4650929.
  8. "Assessing Your Weight and Health Risk". National Heart, Lung and Blood Institute. Archived from the original on 19 December 2014. Retrieved 19 December 2014.
  9. "Defining obesity". NHS. Archived from the original on 18 December 2014. Retrieved 19 December 2014.
  10. "Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee" (PDF). World Health Organization Technical Report Series. 854: 1–452. 1995. PMID 8594834. Archived (PDF) from the original on 2007-02-10.
  11. "Weight Index Doesn't Tell the Whole Truth". The New York Times. 31 August 2010. Archived from the original on 1 May 2017.
  12. "About Adult BMI | Healthy Weight | CDC". 2017-08-29. Retrieved 2018-01-26.
  13. "BMI Classification". Global Database on Body Mass Index. World Health Organization. 2006. Archived from the original on April 18, 2009. Retrieved July 27, 2012.
  14. "Body Mass Index: BMI for Children and Teens". Center for Disease Control. Archived from the original on 2013-10-29. Retrieved 2013-12-16.
  15. Wang Y (2012). "Chapter 2: Use of Percentiles and Z-Scores in Anthropometry". Handbook of Anthropometry. New York: Springer. p. 29. ISBN 978-1-4419-1787-4.
  16. "Health Survey for England: The Health of Children and Young People". Archived from the original on 2012-06-25. Retrieved 16 December 2013.
  17. WHO Expert Consultation (January 2004). "Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies". Lancet. 363 (9403): 157–163. doi:10.1016/S0140-6736(03)15268-3. PMID 14726171.
  18. "Body weight chart - ideal goal weight chart". Fitness of Body - Health & Wellness site.
  19. "肥満って、 どんな状態?" [What is obesity, what kind of state?]. Obesity Homepage (in Japanese). Ministry of Health, Labor and Welfare. Archived from the original on 2013-06-28. Retrieved 2013-05-25.
  20. Shiwaku K, Anuurad E, Enkhmaa B, Nogi A, Kitajima K, Shimono K, et al. (January 2004). "Overweight Japanese with body mass indexes of 23.0–24.9 have higher risks for obesity-associated disorders: a comparison of Japanese and Mongolians". International Journal of Obesity and Related Metabolic Disorders. 28 (1): 152–158. doi:10.1038/sj.ijo.0802486. PMID 14557832.
  21. "Who's fat? New definition adopted". CNN. June 17, 1998. Archived from the original on November 22, 2010. Retrieved 2010-04-26.
  22. World Health Organization (January 10, 2004). "Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies" (PDF). The Lancet. 363 (9403): 157–163. doi:10.1016/s0140-6736(03)15268-3. PMID 14726171.
  23. "Healthy weight, overweight, and obesity among U.S. adults" (PDF). Archived (PDF) from the original on 2016-05-13.
  24. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL (June 2016). "Trends in Obesity Among Adults in the United States, 2005 to 2014". JAMA. 315 (21): 2284–2291. doi:10.1001/jama.2016.6458. PMID 27272580.
  25. "Anthropometric Reference Data for Children and Adults: United States" (PDF). CDC DHHS. 2016. Archived (PDF) from the original on 2017-02-02.
  26. "Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee" (PDF). World Health Organization Technical Report Series. 854 (854): 1–452. 1995. PMID 8594834. Archived (PDF) from the original on 2007-02-10.
  27. "Executive Summary". Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. National Heart, Lung, and Blood Institute. September 1998. xi–xxx. Archived from the original on 2013-01-03.
  28. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L (August 2014). "Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults". Lancet. 384 (9945): 755–765. doi:10.1016/S0140-6736(14)60892-8. PMC 4151483. PMID 25129328.
  29. Jaimes R, Rocco AG (2014). "Multiple epidural steroid injections and body mass index linked with occurrence of epidural lipomatosis: a case series". BMC Anesthesiology. 14: 70. doi:10.1186/1471-2253-14-70. PMC 4145583. PMID 25183952.
  30. Stokes A, Preston SH (December 2015). "Smoking and reverse causation create an obesity paradox in cardiovascular disease". Obesity. 23 (12): 2485–2490. doi:10.1002/oby.21239. PMC 4701612. PMID 26421898.
  31. Jeukendrup A, Gleeson M (2005). Sports Nutrition. Human Kinetics: An Introduction to Energy Production and Performance. ISBN 978-0-7360-3404-3.
  32. Barasi ME (2004). Human Nutrition – a health perspective. ISBN 978-0-340-81025-5.
  33. Dons, E (2018). "Transport mode choice and body mass index: Cross-sectional and longitudinal evidence from a European-wide study" (PDF). Environment International. 119 (119): 109–116. doi:10.1016/j.envint.2018.06.023. hdl:10044/1/61061. PMID 29957352.
  34. Laura Stampler. "France Just Banned Ultra-Thin Models". Archived from the original on 2015-04-10.
  35. ABC News. "Israeli Law Bans Skinny, BMI-Challenged Models". ABC News. Archived from the original on 2014-12-10.
  36. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. (June 2008). "Accuracy of body mass index in diagnosing obesity in the adult general population". International Journal of Obesity. 32 (6): 959–966. doi:10.1038/ijo.2008.11. PMC 2877506. PMID 18283284.
  37. "Aim for a Healthy Weight: Assess your Risk". National Institutes of Health. July 8, 2007. Archived from the original on 16 December 2013. Retrieved 15 December 2013.
  38. Kronmal RA (1993). "Spurious correlation and the fallacy of the ratio standard revisited". Journal of the Royal Statistical Society. 156 (3): 379–392. doi:10.2307/2983064. JSTOR 2983064.
  39. Taylor RS (May 2010). "Letter to the editor". Paediatrics & Child Health. 15 (5): 258. doi:10.1093/pch/15.5.258. PMC 2912631. PMID 21532785.
  40. Reporters, Telegraph (21 January 2013). "Short people 'fatter than they think' under new BMI". Archived from the original on 23 August 2015.
  41. Diverse Populations Collaborative Group (September 2005). "Weight-height relationships and body mass index: some observations from the Diverse Populations Collaboration". American Journal of Physical Anthropology. 128 (1): 220–229. doi:10.1002/ajpa.20107. PMID 15761809.
  42. Levitt DG, Heymsfield SB, Pierson RN, Shapses SA, Kral JG (September 2007). "Physiological models of body composition and human obesity". Nutrition & Metabolism. 4: 19. doi:10.1186/1743-7075-4-19. PMC 2082278. PMID 17883858.
  43. "Why BMI is inaccurate and misleading". Medical News Today. Archived from the original on 2015-07-23.
  44. "BMI: is the body mass index formula flawed?". Medical News Today. Archived from the original on 2015-07-23.
  45. "BMI Not a Good Measure of Healthy Body Weight, Researchers Argue". Archived from the original on 2015-07-21.
  46. Nick, Trefethen. "New BMI (New Body Mass Index)". Numerical analysis. University of Oxford. Retrieved 5 February 2019.
  47. Ronnie Coleman is 5'11" tall and weighed 300 lbs during competition. "Ronnie Coleman Pro Bodybuilding Profile,". July 22, 2013.
  48. "Who's fat? New definition adopted". June 17, 1998. Archived from the original on May 15, 2014. Retrieved 2014-07-15.
  49. Halls (2019-02-18). "Ideal Weight and definition of Overweight". Moose and Doc. Archived from the original on 2011-01-26.
  50. Campos P, Saguy A, Ernsberger P, Oliver E, Gaesser G (February 2006). "The epidemiology of overweight and obesity: public health crisis or moral panic?". International Journal of Epidemiology. 35 (1): 55–60. doi:10.1093/ije/dyi254. PMID 16339599.
  51. Flegal KM, Graubard BI, Williamson DF, Gail MH (April 2005). "Excess deaths associated with underweight, overweight, and obesity". JAMA. 293 (15): 1861–1867. doi:10.1001/jama.293.15.1861. PMID 15840860.
  52. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R (March 2009). "Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies". Lancet. 373 (9669): 1083–1096. doi:10.1016/S0140-6736(09)60318-4. PMC 2662372. PMID 19299006. Retrieved July 11, 2016.
  53. Lim JS, Lee DH, Park JY, Jin SH, Jacobs DR (June 2007). "A strong interaction between serum gamma-glutamyltransferase and obesity on the risk of prevalent type 2 diabetes: results from the Third National Health and Nutrition Examination Survey". Clinical Chemistry. 53 (6): 1092–1098. doi:10.1373/clinchem.2006.079814. PMID 17478563.
  54. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, Mookadam F, Lopez-Jimenez F (August 2006). "Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies". Lancet. 368 (9536): 666–678. doi:10.1016/S0140-6736(06)69251-9. PMID 16920472.
  55. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, et al. (April 2010). "The predictive value of different measures of obesity for incident cardiovascular events and mortality". The Journal of Clinical Endocrinology and Metabolism. 95 (4): 1777–1785. doi:10.1210/jc.2009-1584. PMID 20130075.
  56. Mørkedal B, Romundstad PR, Vatten LJ (June 2011). "Informativeness of indices of blood pressure, obesity and serum lipids in relation to ischaemic heart disease mortality: the HUNT-II study". European Journal of Epidemiology. 26 (6): 457–461. doi:10.1007/s10654-011-9572-7. PMC 3115050. PMID 21461943.
  57. Gadzik J (February 2006). ""How much should I weigh?"--Quetelet's equation, upper weight limits, and BMI prime". Connecticut Medicine. 70 (2): 81–88. PMID 16768059.
  58. "Obesity Education Initiative Electronic Textbook - Treatment Guidelines". US National Institutes of Health. Archived from the original on 1 May 2017. Retrieved 29 July 2016.
  59. "Why is my waist size important?". UK HNS Choices. Archived from the original on 6 August 2016. Retrieved 29 July 2016.
  60. "Waist Size Matters". Harvard School of Public Health. 2012-10-21. Archived from the original on 21 August 2016. Retrieved 29 July 2016.
  61. "Waist-Height Ratio Better Than BMI for Gauging Mortality". 18 Jun 2013. Archived from the original on 17 April 2016. Retrieved 7 April 2016.
  62. "A New Potential Replacement for Body Mass Index | RealClearScience". Archived from the original on 2016-01-01. Retrieved 2015-12-31.
  63. Rahman SA, Adjeroh D (2015). "Surface-Based Body Shape Index and Its Relationship with All-Cause Mortality". PLOS ONE. 10 (12): e0144639. Bibcode:2015PLoSO..1044639R. doi:10.1371/journal.pone.0144639. PMC 4692532. PMID 26709925.
  64. Tsuchiya A, Yazaki M, Kametani F, Takei Y, Ikeda S (April 2008). "Marked regression of abdominal fat amyloid in patients with familial amyloid polyneuropathy during long-term follow-up after liver transplantation". Liver Transplantation. 14 (4): 563–570. doi:10.1002/lt.21395. PMID 18383093.

Further reading

  • Ferrera LA, ed. (2006). Focus on Body Mass Index And Health Research. New York: Nova Science. ISBN 978-1-59454-963-2.
  • Samaras TT, ed. (2007). Human Body Size and the Laws of Scaling: Physiological, Performance, Growth, Longevity and Ecological Ramifications. New York: Nova Science. ISBN 978-1-60021-408-0.
  • Sothern MS, Gordon ST, von Almen TK, eds. (2006). Handbook of Pediatric Obesity: Clinical Management (Illustrated ed.). CRC Press. ISBN 978-1-4200-1911-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.