Biomarker

A biomarker, or biological marker is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated to examine normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.[1] Biomarkers are used in many scientific fields.

Medicine

After a heart attack a number of different cardiac biomarkers can be measured to determine exactly when an attack occurred and how severe it was.

In medicine, a biomarker can be a traceable substance that is introduced into an organism as a means to examine organ function or other aspects of health. For example, rubidium chloride is used as a radioactive isotope to evaluate perfusion of heart muscle.

It can also be a substance whose detection indicates a particular disease state, for example, the presence of an antibody may indicate an infection. More specifically, a biomarker indicates a change in expression or state of a protein that correlates with the risk or progression of a disease, or with the susceptibility of the disease to a given treatment.

One example of a commonly used biomarker in medicine is prostate-specific antigen (PSA). This marker can be measured as a proxy of prostate size with rapid changes potentially indicating cancer. The most extreme case would be to detect mutant proteins as cancer specific biomarkers through Selected reaction monitoring (SRM), since mutant proteins can only come from an existing tumor, thus providing ultimately the best specificity for medical purposes.[2]

Biomarkers used for personalized medicine are typically categorized as either prognostic or predictive. An example is KRAS, an oncogene that encodes a GTPase involved in several signal transduction pathways. Prognostic biomarkers indicate the likelihood of patient outcome regardless of a specific treatment. Predictive biomarkers are used to help optimize ideal treatments, and indicates the likelihood of benefiting from a specific therapy. Biomarkers for precision oncology are typically utilized in the molecular diagnostics of chronic myeloid leukemia, colon, breast, and lung cancer, and in melanoma.[3]

Regulatory validation

Proof of concept

Previously used to identify the specific characteristics of the biomarker, this step is essential for doing an in situ validation of these benefits. Many candidates must be tested to select the most relevant ones.[4]

Experimental validation

This step allows the development of the most adapted protocol for routine use of the biomarker. Simultaneously, it is possible to confirm the relevance of the protocol with various methods (histology, PCR, ELISA, ...) and to define strata based on the results.

Analytical performances validation

One of the most important steps, it serves to identify specific characteristics of the candidate biomarker before developing a routine test.[5] Several parameters are considered including:

  • sensitivity
  • specificity
  • robustness
  • accuracy
  • reproducibility

Protocol standardization

This optimizes the validated protocol for routine use, including analysis of the critical points by scanning the entire procedure to identify and control the potential risks.

Cell biology

In cell biology, a biomarker is a molecule that allows the detection and isolation of a particular cell type (for example, the protein Oct-4 is used as a biomarker to identify embryonic stem cells).[6]

In genetics, a biomarker (identified as genetic marker) is a DNA sequence that causes disease or is associated with susceptibility to disease. They can be used to create genetic maps of whatever organism is being studied.

Chemistry, geology and astrobiology

A biomarker can be any kind of molecule indicating the existence, past or present, of living organisms. In the fields of geology and astrobiology, biomarkers, versus geomarkers, are also known as biosignatures. The term biomarker is also used to describe biological involvement in the generation of petroleum.

Ecotoxicology

Biomarkers are used to indicate an exposure to or the effect of xenobiotics which are present in the environment and in organisms. The biomarker may be an external substance itself (e.g. asbestos particles or NNK from tobacco), or a variant of the external substance processed by the body (a metabolite) that usually can be quantified.

History

The widespread use of the term "biomarker" dates back to as early as 1980.[7] The term "biological marker" was introduced in 1950s.[8][9] In 1998, the National Institutes of Health Biomarkers Definitions Working Group defined a biomarker as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention."[10][11]

See also

References

  1. Biomarkers Definitions Working Group (March 2001). "Biomarkers and surrogate endpoints: preferred definitions and conceptual framework". Clin. Pharmacol. Ther. (Review). 69 (3): 89–95. doi:10.1067/mcp.2001.113989. PMID 11240971. as cited in Siderowf A, Aarsland D, Mollenhauer B, Goldman JG, Ravina B (April 2018). "Biomarkers for cognitive impairment in Lewy body disorders: Status and relevance for clinical trials". Mov. Disord. (Review). 33 (4): 528–36. doi:10.1002/mds.27355. PMID 29624752.
  2. Wang, Qing; Raghothama Chaerkady (December 2010). "Mutant proteins as cancer-specific biomarkers". Proceedings of the National Academy of Sciences. 108 (6): 2444–2449. doi:10.1073/pnas.1019203108. PMC 3038743. PMID 21248225.
  3. Nalejska, Ewelina (2014). "Prognostic and Predictive Biomarkers". Molecular Oncology and Genetics. 18 (3): 273–284. doi:10.1007/s40291-013-0077-9. PMC 4031398. PMID 24385403.
  4. "Proof-of-concept study of biomarker development in mice provides a roadmap for a similar approach in humans". www.fredhutch.org. 2011-07-19. Retrieved 2015-05-13.
  5. Aizpurua-Olaizola, O.; Sastre Toraño, J.; Falcon-Perez, J.M.; Williams, C.; Reichardt, N.; Boons, G.-J. (March 2018). "Mass spectrometry for glycan biomarker discovery". TrAC Trends in Analytical Chemistry. 100: 7–14. doi:10.1016/j.trac.2017.12.015.
  6. Biomarkers for Psychiatric Disorders. Publisher: Springer U.S. doi:10.1007/978-0-387-79251-4 Copyright: 2009 ISBN 978-0-387-79250-7 (Print) 978-0-387-79251-4 (Online)
  7. Aronson, Jeffrey (2005). "Biomarkers and surrogate endpoints". British Journal of Clinical Pharmacology. 59 (5): 491–494. doi:10.1111/j.1365-2125.2005.02435.x. PMC 1884846. PMID 15842546.
  8. Porter, K. A. (1957-08-01). "Effect of homologous bone marrow injections in x-irradiated rabbits". British Journal of Experimental Pathology. 38 (4): 401–412. ISSN 0007-1021. PMC 2082598. PMID 13460185.
  9. Basu, P. K.; Miller, I.; Ormsby, H. L. (1960-03-01). "Sex chromatin as a biologic cell marker in the study of the fate of corneal transplants". American Journal of Ophthalmology. 49 (3): 513–515. doi:10.1016/0002-9394(60)91653-6. ISSN 0002-9394. PMID 13797463.
  10. Strimbu, Kyle; Jorge, Tavel (2010). "What are Biomarkers?". Current Opinion in HIV and AIDS. 5 (6): 463–466. doi:10.1097/COH.0b013e32833ed177. PMC 3078627. PMID 20978388.
  11. "Biomarkers and surrogate endpoints: preferred definitions and conceptual framework". Clinical Pharmacology & Therapeutics. 69 (3): 89–95. 2001. doi:10.1067/mcp.2001.113989. PMID 11240971.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.