Biodegradable waste

Biodegradable waste includes any organic matter in waste which can be broken down into carbon dioxide, water, methane or simple organic molecules by micro-organisms and other living things by composting, aerobic digestion, anaerobic digestion or similar processes. In waste management, it also includes some inorganic materials which can be decomposed by bacteria. Such materials include gypsum and its products such as plasterboard and other simple organic sulfates which can decompose to yield hydrogen sulphide in anaerobic land-fill conditions.[1] [2]

In domestic waste collection, the scope of biodegradable waste may be narrowed to include only those degradable wastes capable of being handled in the local waste handling facilities.[3]

Sources

Biodegradable waste can be found in municipal solid waste (sometimes called biodegradable municipal waste, or BMW) as green waste, food waste, paper waste and biodegradable plastics. Other biodegradable wastes include human waste, manure, sewage, sewage sludge and slaughterhouse waste. In the absence of oxygen, much of this waste will decay to methane by anaerobic digestion.[4]

In many parts of the developed world, biodegradable waste is separated from the rest of the waste stream, either by separate curb-side collection or by waste sorting after collection. At the point of collection such waste is often referred to as green waste.[5] Removing such waste from the rest of the waste stream substantially reduces waste volumes for disposal and also allows biodegradable waste to be composted.

In the UK, 7.4 million tonnes of biodegradable waste was sent to landfill in 2017 having reduced from 7.8 million tonnes in 2018.[6]

Biodegradable waste can be used for composting or a resource for heat, electricity and fuel by means of incineration or anaerobic digestion.[7] Swiss Kompogas and the Danish AIKAN process are examples of anaerobic digestion of biodegradable waste.[8][9] While incineration can recover the most energy, anaerobic digestion plants retain nutrients and make compost for soil amendment and still recover some of the contained energy in the form of biogas. Kompogas produced 27 million Kwh of electricity and biogas in 2009. The oldest of the company's lorries has achieved 1,000,000 kilometers driven with biogas from household waste in the last 15 years.[10]

Climate change impacts

The main environmental threat from biodegradable waste is the production of methane and other greenhouse gases as the waste decomposes.[11]

See also

  • Biodegradability prediction
  • Biodegradable bags
  • Biodegradation
  • Biodrying
  • Brown waste
  • Green waste
  • Landfarming
  • Landfill diversion
  • List of waste types
  • Miniwaste
  • Sewage treatment

References

  1. "Why can't I put my leftover gyproc/drywall in the garbage?". Recycling Council of British Columbia.
  2. "Fact Sheet: Methane and Hydrogen Sulfide Gases at C&DD Landfills" (PDF). Environmental Protection Agency. State of Ohio, U.S.
  3. "Organics -Green Bin". Christchurch City Council. Retrieved 19 March 2016.
  4. CSL London Olympics Waste Review. cslondon.org
  5. "Organics - Green Bin". Christchurch City Council. Retrieved 12 March 2016.
  6. "UK Statistics on Waste" (PDF). March 2019. Retrieved 7 November 2019.
  7. National Non-Food Crops Centre. NNFCC report on Evaluation of Opportunities for Converting Indigenous UK Wastes to Fuels and Energy Archived 20 July 2011 at the Wayback Machine. nnfcc.co.uk
  8. Recycling chain. kompogas-utzenstorf.ch
  9. AIKAN website. aikantechnology.com
  10. "Gesundheit, Kraft und Energie für 2002". zuonline.ch. 3 January 2002. Archived from the original on 2 September 2002.
  11. Biodegradable waste. European Commission
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.