Bacillus methanolicus

Bacillus methanolicus (B. methanolicus) is a gram positive, thermophilic, methylotrophic member of the genus Bacillus. The most well characterized strain of the species, Bacillus methanolicus MGA3, was isolated from freshwater marsh soils, and grows rapidly in cultures heated to up to 60 °C using only methanol as a carbon source.[1] The genome of B. methanolicus MGA3 was fully sequenced in 2014, revealing a 3,337,035 bp linear chromosome and two natural plasmids, pBM19 and pBM69[2] .

Bacillus methanolicus
Scientific classification
Domain:
Bacteria
Phylum:
Class:
Order:
Family:
Genus:
Species:
B. methanolicus
Binomial name
Bacillus methanolicus
Arfman, 1992

Chemical production from methanol

Researchers are currently investigating the use of B. methanolicus MGA3 for production of chemicals such as L-glutamate, L-lysine, cadaverine and gamma-aminobutyric acid from methanol [1][3][4].

Synthetic methylotrophy

The methylotrophic metabolism of B. methanolicus is being explored for establishing synthetic methylotrophy in other organisms. Recombinant expression of the pentose phosphate pathway from B. methanolicus in E. coli has shown promise in creating synthetically methylotrophic E. coli [5].

References

  1. Schendel, Frederick J.; Bremmon, Craig E.; Flickinger, Michael C.; Guettler, Michael; Hanson, Richard S. (1990-04-01). "L-Lysine Production at 50 °C by Mutants of a Newly Isolated and Characterized Methylotrophic Bacillus sp". Applied and Environmental Microbiology. 56 (4): 963–970. PMC 184329.
  2. Irla, Marta; Neshat, Armin; Winkler, Anika; Albersmeier, Andreas; Heggeset, Tonje M.B.; Brautaset, Trygve; Kalinowski, Jörn; Wendisch, Volker F.; Rückert, Christian (2014). "Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph". Journal of Biotechnology. 188: 110–111. doi:10.1016/j.jbiotec.2014.08.013. ISSN 0168-1656.
  3. Naerdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F. (2015). "Methanol-based cadaverine production by genetically engineeredBacillus methanolicusstrains". Microbial Biotechnology. 8 (2): 342–350. doi:10.1111/1751-7915.12257. ISSN 1751-7915.
  4. Irla, Marta; Nærdal, Ingemar; Brautaset, Trygve; Wendisch, Volker F. (2017). "Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains". Industrial Crops and Products. 106: 12–20. doi:10.1016/j.indcrop.2016.11.050. ISSN 0926-6690.
  5. Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian; Antoniewicz, Maciek R.; Papoutsakis, Eleftherios T. (2018). "Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph". Metabolic Engineering. 45: 75–85. doi:10.1016/j.ymben.2017.11.016. ISSN 1096-7176.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.