Acetone cyanohydrin

Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. It liberates hydrogen cyanide easily, so it is used as a source of such. For this reason, this cyanohydrin is also highly toxic.

Acetone cyanohydrin
Ball and stick model of acetone cyanohydrin
Spacefill model of acetone cyanohydrin
Names
IUPAC name
2-Hydroxy-2-methylpropanenitrile[1]
Other names
Cyanohydrin-2-propanone[2]

α-Hydroxyisobutyronitrile[2]

2-Hydroxy-2-methyl-propionitrile[2]
Identifiers
CAS Number
3D model (JSmol)
3DMet
Beilstein Reference
605391
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.000.828
EC Number
  • 200-909-4
KEGG
MeSH acetone+cyanohydrin
PubChem CID
RTECS number
  • OD9275000
UN number 1541
Properties
Chemical formula
C4H7NO
Molar mass 85.106 g·mol−1
Appearance Colourless liquid
Density 932 mg mL−1
Melting point −21.2 °C; −6.3 °F; 251.9 K
Boiling point 95 °C (203 °F; 368 K)
Vapor pressure 2 kPa (at 20 °C)
Refractive index (nD)
1.399
Thermochemistry
Std enthalpy of
formation fH298)
−121.7 to −120.1 kJ mol−1
Std enthalpy of
combustion cH298)
−2.4514 to −2.4498 MJ mol−1
Hazards
Safety data sheet fishersci.com
GHS pictograms
GHS Signal word Danger
GHS hazard statements
H300, H310, H330, H410
GHS precautionary statements
P260, P273, P280, P284, P301+310
NFPA 704 (fire diamond)
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilHealth code 4: Very short exposure could cause death or major residual injury. E.g. VX gasReactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
1
4
2
Flash point 75 °C (167 °F; 348 K)
Explosive limits 2.25–11%
Lethal dose or concentration (LD, LC):
  • 15.8 mg kg−1 (dermal, rabbit)
  • 18.65 mg kg−1 (oral, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
none[2]
REL (Recommended)
C 1 ppm (4 mg/m3) [15-minute][2]
IDLH (Immediate danger)
N.D.[2]
Related compounds
Related alkanenitriles
  • Acetonitrile
  • Aminoacetonitrile
  • Glycolonitrile
  • Cyanogen
  • Propanenitrile
  • Aminopropionitrile
  • Malononitrile
  • Pivalonitrile
  • Butyronitrile
  • Succinonitrile
  • Tetramethylsuccinonitrile
Related compounds
DBNPA
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Preparation

In the laboratory, this compound may be prepared by treating sodium cyanide with acetone, followed by acidification:[3]

Considering the high toxicity of acetone cyanohydrin, a lab scale production has been developed using microreactor technology.[4] to avoid needing to manufacture and store large quantities of the reagent. Alternatively, a simplified procedure involves the action of sodium or potassium cyanide on the sodium bisulfite adduct of acetone prepared in situ. This gives a less pure product, one that is nonetheless suitable for most syntheses.[5]

Reactions

It is used as a surrogate in place of HCN, as illustrated by this synthesis of lithium cyanide:[6]

(CH3)2C(OH)CN + LiH → (CH3)2CO + LiCN + H2

In transhydrocyanation, an equivalent of HCN is transferred from acetone cyanohydrin to another acceptor, with acetone as byproduct. The transfer is an equilibrium process, initiated by base. The reaction can be driven by trapping reactions or by the use of a superior HCN acceptor, such as an aldehyde.[7] In the hydrocyanation reaction of butadiene, the transfer is irreversible.[8]

Acetone cyanohydrin is an intermediate en route to methyl methacrylate. Treated with sulfuric acid give the sulfate ester of the methacrylamide, methanolysis of which gives ammonium bisulfate and methyl methacrylate.[9]

Natural occurrence

Cassava tubers contain linamarin, a glucoside of acetohydrin, and the enzyme linamarinase for hydrolysing the glucoside. Crushing the tubers releases these compounds and produces acetone cyanohydrin.

Safety

Acetone cyanohydrin is classified as an extremely hazardous substance in the US Emergency Planning and Community Right-to-Know Act. The principal hazards of acetone cyanohydrin arise from its ready decomposition on contact with water, which releases highly toxic hydrogen cyanide.

References

  1. "acetone cyanohydrin - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 16 September 2004. Identification. Retrieved 8 June 2012.
  2. NIOSH Pocket Guide to Chemical Hazards. "#0005". National Institute for Occupational Safety and Health (NIOSH).
  3. Cox, R. F. B.; Stormont, R. T. "Acetone Cyanohydrin". Organic Syntheses.; Collective Volume, 2, p. 7
  4. Heugebaert, Thomas S. A.; Roman, Bart I.; De Blieck, Ann; Stevens, Christian V. (2010-08-11). "A safe production method for acetone cyanohydrin". Tetrahedron Letters. 51 (32): 4189–4191. doi:10.1016/j.tetlet.2010.06.004.
  5. Wagner, E. C.; Baizer, Manuel. "5,5-Dimethylhydantoin". Organic Syntheses.; Collective Volume, 3, p. 323
  6. Tom Livinghouse (1981). "Trimethylsilyl Cyanide: Cyanosilylation of p-Benzoquinone". Org. Synth. 60: 126. doi:10.15227/orgsyn.060.0126.CS1 maint: uses authors parameter (link)
  7. Haroutounian, Serkos A. (2001). "Acetone Cyanohydrin". Encyclopedia of Reagents for Organic Synthesis. eEROS. doi:10.1002/047084289X.ra014. ISBN 0471936235.
  8. Bini, L.; Müller, C.; Wilting, J.; von Chrzanowski, L.; Spek, A. L.; Vogt, D. (October 2007). "Highly selective hydrocyanation of butadiene toward 3-pentenenitrile". J. Am. Chem. Soc. 129 (42): 12622–12623. doi:10.1021/ja074922e. hdl:1874/26892. PMID 17902667.
  9. Bauer, William, Jr. "Methacrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a16_441..
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.