Accommodation (eye)

Accommodation is the process by which the vertebrate eye changes optical power to maintain a clear image or focus on an object as its distance varies. In this, distances vary for individuals from the far point—the maximum distance from the eye for which a clear image of an object can be seen, to the near point—the minimum distance for a clear image. Accommodation usually acts like a reflex, including as part of the accommodation-vergence reflex, but it can also be consciously controlled. Mammals, birds and reptiles vary the optical power by changing the form of the elastic lens using the ciliary body (in humans up to 15 dioptres). Fish and amphibians vary the power by changing the distance between a rigid lens and the retina with muscles.[1]

Duane's classical curves showing the amplitude or width of accommodation as changing with age. Mean (B) and approximate lower (A) and upper (C) standard deviations are shown[2]
Minimum (top) and maximum accommodation (bottom)

The young human eye can change focus from distance (infinity) to as near as 6.5 cm from the eye.[3] This dramatic change in focal power of the eye of approximately 15 dioptres (the reciprocal of focal length in metres) occurs as a consequence of a reduction in zonular tension induced by ciliary muscle contraction. This process can occur in as little as 224 ± 30 milliseconds in bright light [4]. The amplitude of accommodation declines with age. By the fifth decade of life the accommodative amplitude can decline so that the near point of the eye is more remote than the reading distance. When this occurs the patient is presbyopic. Once presbyopia occurs, those who are emmetropic (do not require optical correction for distance vision) will need an optical aid for near vision; those who are myopic (nearsighted and require an optical correction for distance vision), will find that they see better at near without their distance correction; and those who are hyperopic (farsighted) will find that they may need a correction for both distance and near vision. Note that these effects are most noticeable when the pupil is large; i.e. in dim light. The age-related decline in accommodation occurs almost universally to less than 2 dioptres by the time a person reaches 45 to 50 years, by which time most of the population will have noticed a decrease in their ability to focus on close objects and hence require glasses for reading or bifocal lenses. Accommodation decreases to about 1 dioptre at the age of 70 years. The dependency of accommodation amplitude on age is graphically summarized by Duane's classical curves.[2]

Theories of mechanism

  • Helmholtz—The most widely held[5] theory of accommodation is that proposed by Hermann von Helmholtz in 1855. When viewing a far object, the circularly arranged ciliary muscle relaxes allowing the lens zonules and suspensory ligaments to pull on the lens, flattening it. The source of the tension is the pressure that the vitreous and aqueous humours exert outwards onto the sclera. When viewing a near object, the ciliary muscles contract (resisting the outward pressure on the sclera) causing the lens zonules to slacken which allows the lens to spring back into a thicker, more convex, form.
  • SchacharRonald A. Schachar has proposed in 1992 what has been called a "rather bizarre geometric theory"[6] which claims that focus by the human lens is associated with increased tension on the lens via the equatorial zonules; that when the ciliary muscle contracts, equatorial zonular tension is increased, causing the central surfaces of the crystalline lens to steepen, the central thickness of the lens to increase (anterior-posterior diameter), and the peripheral surfaces of the lens to flatten. While the tension on equatorial zonules is increased during accommodation, the anterior and posterior zonules are simultaneously relaxing. The increased equatorial zonular tension keeps the lens stable and flattens the peripheral lens surface during accommodation. As a consequence, gravity does not affect the amplitude of accommodation and primary spherical aberration shifts in the negative direction during accommodation.[7][8] The theory has not found much independent support.
  • Catenary—D. Jackson Coleman proposes that the lens, zonule and anterior vitreous comprise a diaphragm between the anterior and vitreous chambers of the eye.[9] Ciliary muscle contraction initiates a pressure gradient between the vitreous and aqueous compartments that support the anterior lens shape in the mechanically reproducible state of a steep radius of curvature in the center of the lens with slight flattening of the peripheral anterior lens, i.e. the shape, in cross section, of a catenary. The anterior capsule and the zonule form a trampoline shape or hammock shaped surface that is totally reproducible depending on the circular dimensions, i.e. the diameter of the ciliary body (Müeller’s muscle). The ciliary body thus directs the shape like the pylons of a suspension bridge, but does not need to support an equatorial traction force to flatten the lens.[10][11]

Induced effects of accommodation

When humans accommodate to a near object, they also converge their eyes and, as a result, constrict their pupils. However, the constriction of the pupils is not part of the process called lens accommodation. The combination of these three movements (accommodation, convergence and miosis) is under the control of the Edinger-Westphal nucleus and is referred to as the near triad, or accommodation reflex.[12] While it is well understood that proper convergence is necessary to prevent diplopia, the functional role of the pupillary constriction remains less clear. Arguably, it may increase the depth of field by reducing the aperture of the eye, and thus reduce the amount of accommodation needed to bring the image in focus on the retina.[13]

There is a measurable ratio between how much convergence takes place because of accommodation (AC/A ratio, CA/C ratio). Abnormalities with this can lead to binocular vision problems.

Accommodative dysfunction

Duke-Elder classified a number of accommodative dysfunctions:[14]

See also

Disorders of and relating to accommodation



  1. Augen (in German), retrieved 2009-05-02
  2. Duane, Alexander (1922). "Studies in Monocular and Binocular Accommodation with their Clinical Applications". American Journal of Ophthalmology. 5 (11): 865–877. doi:10.1016/s0002-9394(22)90793-7.
  3. Chen, Ai Hong; O’Leary, Daniel J.; Howell, Edwin R. (2000). "Near visual function in young children". Ophthal. Physiol. Opt. 20 (3): 185–198. doi:10.1016/S0275-5408(99)00056-3, Fig. 5.
  4. Lockhart, T. E.; Shi, W. (2010). "Effects of Age on Dynamic Accommodation". Ergonomics. 53 (7): 892–903. doi:10.1080/00140139.2010.489968. PMC 2908311. PMID 20582770.
  5. M. Baumeister, T. Kohnen: Akkommodation und Presbyopie: Teil 1: Physiologie der Akkommodation und Entwicklung der Presbyopie "Nach der heute größtenteils akzeptierten und im Wesentlichen experimentell bestätigten Theorie von Helmholtz ..." (German)
  6. Atchison, David A. (1995). "Accommodation and presbyopia". Ophthal. Physiol. Opt. 15 (4): 255–212. doi:10.1046/j.1475-1313.1995.9500020e.x.
  7. Schachar RA. "The Mechanism of Accommodation and Presbyopia" Kugler Publication, Amsterdam, The Netherlands, 2012.
  8. Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q (2014-10-24). "Wavefront aberration changes caused by a gradient of increasing accommodation stimuli". Eye. 29 (1): 115–121. doi:10.1038/eye.2014.244. ISSN 0950-222X. PMID 25341432.
  9. Coleman, D. Jackson (June 1970). "Unified Model for Accommodative Mechanism". American Journal of Ophthalmology. 69 (6): 1063–1079. doi:10.1016/0002-9394(70)91057-3. ISSN 0002-9394. PMID 5423772.
  10. Coleman DJ. "On the hydraulic suspension theory of accommodation". Trans Am Ophthalmol Soc 1986, 84:846–68.
  11. Coleman DJ, Fish SK. "Presbyopia, Accommodation, and the Mature Catenary". Ophthalmol 2001; 108(9):1544–51.
  12. Binocular Vision. By Rahul Bhola, MD The University of Iowa Department of Ophthalmology & Visual Sciences. Posted Jan. 18, 2006, updated Jan. 23, 2006
  13. Wang, B.; Ciuffreda, K. J. (2006). "Depth-of-Focus of the Human Eye: Theory and Clinical Implications". Survey of Ophthalmology. 51 (1): 75–85. doi:10.1016/j.survophthal.2005.11.003. PMID 16414364.
  14. Duke-Elder, Sir Stewart (1969). The Practice of Refraction (8th ed.). St. Louis: The C. V. Mosby Company. ISBN 0-7000-1410-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.